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1 Taking inspiration from forecasting

1.1 Weather forecasters

• Weather forecasters started thinking about calibration a long time ago [1].

– A forecast 70% chance of rain should be followed by rain 70% of the time.

• This is immediately applicable to binary classification:

– A prediction 70% chance of spam should be spam 70% of the time.

• and to multi-class classification:

– A prediction 70% chance of setosa, 10% chance of versicolor and
20% chance of virginica should be setosa/versicolor/virginica 70/10/20%
of the time.

• In general:

– A predicted probability (vector) should match empirical (observed) probabil-
ities.

Q: What does X% of the time mean?

It means that we expect the occurrence of an event to happen “X%” of the time.

1.2 Forecasting example

Let’s consider a small toy example:

• Two predictions of 10% chance of rain were both followed by no rain.
• Two predictions of 40% chance of rain were once followed by no rain, and once

by rain.
• Three predictions of 70% chance of rain were once followed by no rain, and

twice by rain.
• One prediction of 90% chance of rain was followed by rain.
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1 Taking inspiration from forecasting

Q: Is this forecaster well-calibrated?

The evaluation of calibration requires a large number of samples to make a state-
ment. However, in this toy example we can assume that a 10% discrepancy is
acceptable, and that the number of samples is sufficient.

1.3 Over- and under-estimates
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This forecaster is doing a pretty decent job:

• 10% chance of rain was a slight over-estimate
( ̄𝑦 = 0/2 = 0%);

• 40% chance of rain was a slight under-estimate
( ̄𝑦 = 1/2 = 50%);

• 70% chance of rain was a slight over-estimate
( ̄𝑦 = 2/3 = 67%);

• 90% chance of rain was a slight under-estimate
( ̄𝑦 = 1/1 = 100%).

1.4 Visualising forecasts: the reliability diagram

̂𝑝 𝑦
0
1

0.1
0.1

0
0

2
3

0.4
0.4

0
1

2



1.5 Changing the numbers slightly
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import numpy as np
import matplotlib.pyplot as plt

from pycalib.visualisations import plot_reliability_diagram

labels = np.array([0, 0, 0, 1, 0, 1, 1, 1])
scores = np.array([0.1, 0.1 ,0.4, 0.4,0.7, 0.7, 0.7, 0.9])
bins = [0, 0.25, 0.5, 0.85, 1.0]
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram(labels, np.vstack([1 - scores, scores]).T,

class_names=['not 1', 'rain'], bins=bins,
fig=fig, show_gaps=True,
show_bars=True)
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1.5 Changing the numbers slightly
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1 Taking inspiration from forecasting
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import numpy as np
import matplotlib.pyplot as plt

from pycalib.visualisations import plot_reliability_diagram

labels = np.array([0, 0, 0, 1, 0, 1, 1, 1])
scores = np.array([0.1, 0.2 ,0.3, 0.4, 0.6, 0.7, 0.8, 0.9])
bins = [0, 0.25, 0.5, 0.85, 1.0]
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram(labels, np.vstack([1 - scores, scores]).T,

class_names=['not 1', 'rain'], bins=bins,
fig=fig, show_gaps=True,
show_bars=True)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 p

os
iti

ve
s

Average score (Class rain)
0
2

Co
un

t

4



1.6 Or should we group the forecasts differently?

1.6 Or should we group the forecasts differently?
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import numpy as np
import matplotlib.pyplot as plt

from pycalib.visualisations import plot_reliability_diagram

labels = np.array([0, 0, 0, 1, 0, 1, 1, 1])
scores = np.array([0.1, 0.2 ,0.3, 0.4, 0.6, 0.7, 0.8, 0.9])
bins = [0, 0.5, 1.0]
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram(labels, np.vstack([1 - scores, scores]).T,

class_names=['not 1', 'rain'], bins=bins,
fig=fig, show_gaps=True,
show_bars=True)
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1 Taking inspiration from forecasting

1.7 Or not at all?

̂𝑝 𝑦
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import numpy as np
import matplotlib.pyplot as plt

from pycalib.visualisations import plot_reliability_diagram

labels = np.array([0, 0, 0, 1, 0, 1, 1, 1])
scores = np.array([0.1, 0.2 ,0.3, 0.4, 0.6, 0.7, 0.8, 0.9])
bins = [0, 0.101, 0.201, 0.301, 0.401, 0.601, 0.701, 0.801, 0.901, 1.0]
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram(labels, np.vstack([1 - scores, scores]).T,

class_names=['not 1', 'rain'], bins=bins,
fig=fig, show_gaps=True,
show_bars=True)
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1.8 Binning or pooling predictions is a fundamental notion

1.8 Binning or pooling predictions is a fundamental notion

We need bins to evaluate the degree of calibration:

• In order to decide whether a weather forecaster is well-calibrated, we need to look
at a good number of forecasts, say over one year.

• We also need to make sure that there are a reasonable number of forecasts for
separate probability values, so we can obtain reliable empirical estimates.

– Trade-off: large bins give better empirical estimates, small bins allows a more
fine-grained assessment of calibration.}

But adjusting forecasts in groups also gives rise to practical calibration methods:

• empirical binning
• isotonic regression (aka ROC convex hull)

1.9 Questions and answers

1.9.1 Q&A 1

Question 1

A binary classifier for weather predictions produces a score of 0.1 for rain two times
but it does not rain, two times 0.4 and it rains only once, five times 0.6 and it rains
80% of the times and one time 0.9 and it rains. Does the following reliability
diagram show that information?

Answer: Yes

Correct. You can see that there is one bin per predicted score 0.1, 0.4, 0.6 and 0.9.
Each bin contains the number of scores indicated in the smaller histogram below
with 2, 2, 5 and 1 samples respectively. Finally, the height of each bin corresponds
to the fraction of rains indicated in the question 0%, 50%, 80% and 100%.

Answer: No

Incorrect. Try another answer.

import numpy as np
import matplotlib.pyplot as plt
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1 Taking inspiration from forecasting

from pycalib.visualisations import plot_reliability_diagram

labels = np.array([0, 0, 0, 1, 0, 1, 1, 1, 1, 1])
scores = np.array([.1, .1, .4, .4, .6, .6, .6, .6, .6, .9])
fig = plt.figure(figsize=(5, 3))
fig = plot_reliability_diagram(labels, np.vstack([1 - scores, scores]).T,

class_names=['not 1', 'rain'], bins=4,
fig=fig,
hist_per_class=False,
show_bars=True,
show_gaps=True)
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1.9.2 Q&A 2

Question 2

A binary classifier for weather predictions produces a score of 0.1 for rain two times
and it rains once, three times 0.4 and it rains two times, four times 0.6 and it rains
once and one time 0.9 and it rains. Does the following reliability diagram show
that information?

Answer: Yes

Correct. You can see that there is one bin per predicted score 0.1, 0.4, 0.6 and 0.9.
Each bin contains the number of scores indicated in the smaller histogram below
with 2, 3, 4 and 1 samples respectively. Finally, the height of each bin corresponds
to the fraction of rains indicated in the question 50%, 66.6%, 25% and 100%.
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1.9 Questions and answers

Answer: No

Incorrect. Try another answer.

labels = np.array([0, 1, 0, 1, 1, 0, 0, 0, 1, 1])
scores = np.array([.1, .1, .4, .4, .4, .6, .6, .6, .6, .9])
fig = plt.figure(figsize=(5, 3))
fig = plot_reliability_diagram(labels, np.vstack([1 - scores, scores]).T,

class_names=['not 1', 'rain'], bins=4,
fig=fig,
hist_per_class=False,
show_bars=False,
show_gaps=True)
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1.9.3 Q&A 3

Question 3

Do we need multiple instances in each bin in order to visualise a reliability diagram?

Answer: Yes

Incorrect. Try another answer.

Answer: No

Correct. It is not necessary to have multiple instances in each bin for visualisation
purposes. However, the lack of information does not allow us to know if the model
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1 Taking inspiration from forecasting

is calibrated for those scores.

1.9.4 Q&A 4

Question 4

The following figure shows the reliability diagram of a binary classifier on enough
samples to be statistically significant. Is the model calibrated, producing under-
estimates or over-estimates?

Answer: Over-estimates

Incorrect. Try another answer.

Answer: Under-estimates

Correct. For each predicted score the actual fraction of positives is higher.
import numpy as np

from pycalib.visualisations import plot_reliability_diagram_precomputed

scores = np.array([0, .1, .3, .6, .8, 1]).reshape(-1, 1)
empirical = np.array([.1, .2, .5, .7, .9, 1]).reshape(-1, 1)
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram_precomputed(avg_true=empirical, avg_pred=scores,

class_names=['rain'],
fig=fig, show_gaps=True)
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1.9 Questions and answers
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1.9.5 Q&A 5

Question 5

The following figure shows the reliability diagram of a binary classifier on enough
samples to be statistically significant. Is the model calibrated, producing under-
estimates or over-estimates?

Answer: Over-estimates

Correct. For each predicted score the actual fraction of positives is lower.

Answer: Under-estimates

Incorrect. Try another answer.

import numpy as np

from pycalib.visualisations import plot_reliability_diagram_precomputed

scores = np.array([0, .1, .3, .5, .7, .8, .9, 1]).reshape(-1, 1)

11



1 Taking inspiration from forecasting

empirical = np.array([0, .05, .1, .3, .33, .6, .8, 1]).reshape(-1, 1)
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram_precomputed(avg_true=empirical, avg_pred=scores,

class_names=['rain'],
fig=fig, show_gaps=True)
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2 Why are we interested in calibration?

2.1 Why are we interested in calibration?

To calibrate means to employ a known scale with known properties.

• E.g., additive scale with a well-defined zero, so that ratios are meaningful.

For classifiers we want to use the probability scale, so that we can

• justifiably use default decision rules (e.g., maximum posterior probability);
• adjust these decision rules in a straightforward way to account for different class

priors or misclassification costs;
• combine probability estimates in a well-founded way.

Q: Is the probability scale additive?

In some situations we may want to sum probabilities, for example if we have a set
of mutually exclusive events, the probability of at least one of them happening can
be computed by their sum. In other situations the product of probabilities is used,
e.g. the probability of two independent events happening at the same time.

Q: How would you combine probability estimates from several well-calibrated
models?

Check some online information e.g. When pooling forecasts, use the geometric
mean of odds
And the following code shows some examples.

import numpy as np
from tabulate import tabulate
from IPython.display import Markdown

def mean(p):
'''Arithmetic mean'''
p = np.array(p)
return np.sum(p)/(len(p))

13
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2 Why are we interested in calibration?

def gmean(p):
'''Geometric mean'''
p = np.array(p)
o = np.power(np.prod(p/(1-p)), 1/len(p))
return o/(1+o)

def hmean(p):
'''Harmonic mean'''
p = np.array(p)
return len(p)/np.sum(1/p)

example_list = [[.1, .1], [.5, .5], [.1, .9],
[.1, .1, .9], [.1, .1, .99], [.1, .1, .999]]

functions = {'Arithmetic mean': mean,
'Geometric mean': gmean,
'Harmonic mean': hmean}

table = []

for example in example_list:
table.append([np.array2string(np.array(example))])
table[-1].extend([f'{f(example):.2f}' for f in functions.values()])

headers = ['Probabilities']
headers.extend(list(functions.keys()))

Markdown(tabulate(table, headers=headers))

Table 2.1: Example of probability means
Probabilities Arithmetic mean Geometric mean Harmonic mean
[0.1 0.1] 0.1 0.1 0.1
[0.5 0.5] 0.5 0.5 0.5
[0.1 0.9] 0.5 0.5 0.18
[0.1 0.1 0.9] 0.37 0.32 0.14
[0.1 0.1 0.99] 0.4 0.52 0.14
[0.1 0.1 0.999] 0.4 0.7 0.14

14



2.2 Optimal decisions I

2.2 Optimal decisions I

Denote the cost of predicting class 𝑗 for an instance of true class 𝑖 as 𝐶( ̂𝑌 = 𝑗|𝑌 = 𝑖).
The expected cost of predicting class 𝑗 for instance 𝑥 is

𝐶( ̂𝑌 = 𝑗|𝑋 = 𝑥) = ∑
𝑖

𝑃(𝑌 = 𝑖|𝑋 = 𝑥)𝐶( ̂𝑌 = 𝑗|𝑌 = 𝑖)

where 𝑃(𝑌 = 𝑖|𝑋 = 𝑥) is the probability of instance 𝑥 having true class 𝑖 (as would be
given by the Bayes-optimal classifier).

The optimal decision is then to predict the class with lowest expected cost:

̂𝑌 ∗ = arg min
𝑗

𝐶( ̂𝑌 = 𝑗|𝑋 = 𝑥) = arg min
𝑗

∑
𝑖

𝑃(𝑌 = 𝑖|𝑋 = 𝑥)𝐶( ̂𝑌 = 𝑗|𝑌 = 𝑖)

2.3 Optimal decisions II

In binary classification we have:

𝐶( ̂𝑌 = +|𝑋 = 𝑥) = 𝑃(+|𝑥)𝐶(+|+) + (1 − 𝑃(+|𝑥))𝐶(+|−)
𝐶( ̂𝑌 = −|𝑋 = 𝑥) = 𝑃(+|𝑥)𝐶(−|+) + (1 − 𝑃(+|𝑥))𝐶(−|−)

On the optimal decision boundary these two expected costs are equal, which gives

𝑃(+|𝑥) = 𝐶(+|−) − 𝐶(−|−)
𝐶(+|−) − 𝐶(−|−) + 𝐶(−|+) − 𝐶(+|+) ≜ 𝑐

This gives the optimal threshold on the hypothetical Bayes-optimal probabilities.

It is also the best thing to do in practice – as long as the probabilities are well-
calibrated!

15



2 Why are we interested in calibration?

2.4 Optimal decisions III

Without loss of generality we can set the cost of true positives and true negatives to
zero; 𝑐 = 𝑐FP

𝑐FP+𝑐FN
is then the cost of a false positive in proportion to the combined cost

of one false positive and one false negative.

• E.g., if false positives are 4 times as costly as false negatives then we set the
decision threshold to 4/(4 + 1) = 0.8 in order to only make positive predictions if
we’re pretty certain.

Similar reasoning applies to changes in class priors:

• if we trained on balanced classes but want to deploy with 4 times as many positives
compared to negatives, we lower the decision threshold to 0.2;

• more generally, if we trained for class ratio 𝑟 and deploy for class ratio 𝑟′ we set
the decision threshold to 𝑟/(𝑟 + 𝑟′).

Cost and class prior changes can be combined in the obvious way.

2.5 Questions and answers

2.5.1 Q&A 1

Question 1

Is it possible to compute optimal risks given a cost matrix and a probabilistic
classifier that is not calibrated?

Answer: Yes

Incorrect. Try another answer.

Answer: No

Correct.

16



2.5 Questions and answers

2.5.2 Q&A 2

Question

Given a calibrated probabilistic classifier, is it optimal to select the class with the
highest predicted probability?

Answer: Yes

Incorrect. Try another answer.

Answer: No

Correct.

Question

If we have the following cost matrix, and a model outputs 0.6 probability for class
1. What would be the expected cost of predicting class 2?

import numpy as np
from tabulate import tabulate
from IPython.display import Markdown

cost_matrix = [[-1, 4],
[ 2, -2]]

table = [['True Class 1'],
['True Class 2']]

for i, c in enumerate(cost_matrix):
table[i].extend(c)

headers = ['Predicted Class 1', 'Predicted Class 2']

Markdown(tabulate(table, headers=headers))

Table 2.2: Example of a cost matrix
Predicted Class 1 Predicted Class 2

True Class 1 -1 4
True Class 2 2 -2

17



2 Why are we interested in calibration?

Answer: 0.4

Incorrect. Try another answer.

Answer: -0.4

Incorrect. Try another answer.

Answer: 1.6

Correct. 4 ∗ 0.6 − 2 ∗ 0.4

Question

What would be the expected cost of predicting class 1?

Answer: 0.4

Incorrect. Try another answer.

Answer: -0.4

Correct. −1 ∗ 0.6 + 2 ∗ 0.4

Answer: 1.6

Incorrect. Try another answer.

18



3 Common sources of miscalibration

3.1 Common sources of miscalibration

Underconfidence: a classifier thinks it’s worse at separating classes than it actually is.

• Hence we need to pull predicted probabilities away from the centre.

Overconfidence: a classifier thinks it’s better at separating classes than it actually is.

• Hence we need to push predicted probabilities toward the centre.

A classifier can be overconfident for one class and underconfident for the other, in which
case all predicted probabilities need to be increased or decreased.

3.2 Underconfidence example

• Underconfidence typically gives sigmoidal distortions.
• To calibrate these means to pull predicted probabilities away from the centre.

19



3 Common sources of miscalibration

Source: [7]

3.3 Overconfidence example

• Overconfidence is very common, and usually a consequence of over-counting evi-
dence.

• Here, distortions are inverse-sigmoidal
• Calibrating these means to push predicted probabilities toward the centre.

20



3.4 Why fitting the distortions helps with calibration

Source: [7]

3.4 Why fitting the distortions helps with calibration

In clockwise direction, the dotted arrows show:

1. using a point’s uncalibrated score on the 𝑥-axis as input to the calibration map,
2. mapping the resulting output back to the diagonal, and
3. combine with the empirical probability of the point we started from.

21



3 Common sources of miscalibration

The closer the original point is to the fitted calibration map, the closer the calibrated
point (in red) will be to the diagonal.

3.5 Questions and answers

3.5.1 Q&A 1

Question

The following figures show the reliability diagram of several binary classifiers. As-
suming that there are enough samples on each bin, indicate if the model seems
calibrated, over-confident or under-confident.

22



3.5 Questions and answers

Answer: Calibrated.

Incorrect. Try another answer.
Answer: Over-confident.

Correct.
Answer: Under-confident.

Incorrect. Try another answer.

import numpy as np
from pycalib.visualisations import plot_reliability_diagram_precomputed

scores = np.array([0., .1, .3, .4, .7, .9, 1.]).reshape(-1, 1)
empirical = np.array([.1, .2, .4, .5, .6, .8, .9]).reshape(-1, 1)
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram_precomputed(avg_true=empirical, avg_pred=scores,

class_names=['rain'],
fig=fig, show_gaps=True)
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3 Common sources of miscalibration

3.5.2 Q&A 2

Answer: Calibrated.

Correct.

Answer: Over-confident.

Incorrect. Try another answer.

Answer: Under-confident.

Incorrect. Try another answer.

import numpy as np
from pycalib.visualisations import plot_reliability_diagram_precomputed

scores = np.array([0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1]).reshape(-1, 1)
empirical = scores
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram_precomputed(avg_true=empirical, avg_pred=scores,

class_names=['rain'],
fig=fig, show_gaps=True)
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3.5 Questions and answers
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3.5.3 Q&A 3

Answer: Calibrated.

Incorrect. Try another answer.

Answer: Over-confident.

Incorrect. Try another answer.

Answer: Under-confident.

Correct.

import numpy as np
from pycalib.visualisations import plot_reliability_diagram_precomputed

scores = np.array([.1, .3, .5, .6, .8, .9]).reshape(-1, 1)
empirical = np.array([0., .2, .5, .7, .9, 1.]).reshape(-1, 1)
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram_precomputed(avg_true=empirical, avg_pred=scores,
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3 Common sources of miscalibration

class_names=['rain'],
fig=fig, show_gaps=True)
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3.5.4 Q&A 4

Question

Can a binary classifier show a calibrated reliability diagram with a number of
equally distributed bins, and a non-calibrated one with a higher number of equally
distributed bins?

Answer: Yes.

Correct.

Answer: No.

Incorrect. Try another answer.
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4 A first look at some calibration
techniques

4.1 A first look at some calibration techniques

• Parametric calibration involves modelling the score distributions within each
class. \

– Platt scaling = Logistic calibration can be derived by assuming that the
scores within both classes are normally distributed with the same variance
[8].

– Beta calibration employs Beta distributions instead, to deal with scores
already on a [0, 1] scale [5].

– Dirichlet calibration for more than two classes [6].

• Non-parametric calibration often ignores scores and employs ranks instead. \

– E.g., isotonic regression = pool adjacent violators = ROC convex hull [9]
[2].

4.2 Platt scaling
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4 A first look at some calibration techniques

𝑝(𝑠; 𝑤, 𝑚) = 1
1 + exp(−𝑤(𝑠 − 𝑚))

𝑤 = (𝜇pos − 𝜇neg)/𝜎2, 𝑚 = (𝜇pos + 𝜇neg)/2

4.3 Beta calibration

𝑝(𝑠; 𝑎, 𝑏, 𝑐) = 1
1 + exp(−𝑎 ln 𝑠 − 𝑏 ln(1 − 𝑠) − 𝑐)

𝑎 = 𝛼pos − 𝛼neg, 𝑏 = 𝛽neg − 𝛽pos
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4.4 Isotonic regression

4.4 Isotonic regression
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4 A first look at some calibration techniques

Source: Flach [3]

4.5 Questions and answers

Question

Can a binary classifier show a calibrated reliability diagram with a number of
equally distributed bins, and a non-calibrated one with a higher number of equally
distributed bins?

Answer: What is a calibration map?

It is a mapping between the scores to be calibrated and the objective probabilities.
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4.5 Questions and answers

Platt scaling:

Can Platt scaling calibrate probabilistic models that are overconfident?

Answer: Yes.

Incorrect. Try another answer.

Answer: No.

Correct. Platt scaling for probability scores can only generate S shaped calibration
maps, which can only calibrate under-confident scores.

Isotonic regression:

Is isotonic regression a parametric method?

Answer: Yes.

Incorrect. Try another answer.

Answer: No.

Correct.

Platt scaling:

Can Platt scaling learn an identity function if the model is already calibrated?

Answer: Yes.

Incorrect. Try another answer.

Answer: No.

Correct. Platt scaling can only learn S shaped functions, and the identity function
requires a straight line.
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5 Calibrating multi-class classifiers

5.1 What’s so special about multi-class calibration?

Similar to classification, some methods are inherently multi-class but most are not.

This leads to (at least) three different ways of defining what it means to be fully
multiclass-calibrated. - Many recent papers use the (weak) notion of confidence calibra-
tion.

Evaluating multi-class calibration is in its full generality still an open problem.

5.2 Definitions of calibration for more than two classes

The following definitions of calibration are equivalent for binary classification but in-
creasingly stronger for more than two classes:

• Confidence calibration: only consider the highest predicted probability.
• Class-wise calibration: only consider marginal probabilities.
• Multi-class calibration: consider the entire vector of predicted probabilities.

5.3 Confidence calibration

This was proposed by Guo et al. [4], requiring that among all instances where the proba-
bility of the most likely class is predicted to be 𝑐, the expected accuracy is 𝑐. (We call
this ‘confidence calibration’ to distinguish it from the stronger notions of calibration.)

Formally, a probabilistic classifier p̂ ∶ 𝒳 → Δ𝑘 is confidence-calibrated, if for any
confidence level 𝑐 ∈ [0, 1], the actual proportion of the predicted class, among all possible
instances x being predicted this class with confidence 𝑐, is equal to 𝑐:

𝑃 (𝑌 = 𝑖 | ̂𝑝𝑖(x) = 𝑐) = 𝑐 where 𝑖 = arg max
𝑗

̂𝑝𝑗(x).
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5 Calibrating multi-class classifiers

5.4 Class-wise calibration

Originally proposed by Zadrozny and Elkan [10], this requires that all one-vs-rest
probability estimators obtained from the original multiclass model are calibrated.

Formally, a probabilistic classifier p̂ ∶ 𝒳 → Δ𝑘 is classwise-calibrated, if for any class
𝑖 and any predicted probability 𝑞𝑖 for this class, the actual proportion of class 𝑖, among
all possible instances x getting the same prediction ̂𝑝𝑖(x) = 𝑞𝑖, is equal to 𝑞𝑖:

𝑃(𝑌 = 𝑖 ∣ ̂𝑝𝑖(x) = 𝑞𝑖) = 𝑞𝑖 for 𝑖 = 1, … , 𝑘.

5.5 Multi-class calibration

This is the strongest form of calibration for multiple classes, subsuming the previous
two definitions.

A probabilistic classifier p̂ ∶ 𝒳 → Δ𝑘 is multiclass-calibrated if for any prediction
vector q = (𝑞1, … , 𝑞𝑘) ∈ Δ𝑘, the proportions of classes among all possible instances x
getting the same prediction p̂(x) = q are equal to the prediction vector q:

𝑃(𝑌 = 𝑖 ∣ p̂(x) = q) = 𝑞𝑖 for 𝑖 = 1, … , 𝑘.

5.6 Reminder: binning needed

For practical purposes, the conditions in these definitions need to be relaxed. This is
where binning comes in.

Once we have the bins, we can draw a reliability diagram as in the two-class case. For
class-wise calibration, we can show per-class reliability diagrams or a single averaged
one.

The degree of calibration is assessed using the gaps in the reliability diagram. All of
this will be elaborated in the next part of the tutorial.

34



5.7 Important points to remember

5.7 Important points to remember

• Only well-calibrated probability estimates are worthy to be called prob-
abilities: otherwise they are just scores that happen to be in the [0, 1] range.

• Binning will be required in some form: instance-based probability evaluation
metrics such as Brier score or log-loss always measure calibration plus something
else.

• In multi-class settings, think carefully about which form of calibration
you need: e.g., confidence-calibration is too weak in a cost-sensitive setting.

5.8 Questions and answers

Model scores:

Can we interpret the output of any model that produces values between zero and
one as probabilities?
Answer: Yes.

Incorrect. Try another answer.
Answer: No.

Correct. Some models have been trained to generate values in any arbitrary range,
but this does not mean that the model is predicting actual probabilities.

Question

Is there only one way to measure calibration for multiclass probability scores.
Answer: Yes.

Incorrect. Try another answer.
Answer: No.

Correct. There are multiple measures of calibration.
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5 Calibrating multi-class classifiers

Question

Can we perform optimal decisions in a multiclass setting by knowing the highest
probability among the classes and the misclassification costs?

Answer: Yes.

Incorrect. Try another answer.

Answer: No.

Correct. We need the probabilities of every class in order to make an optimal
decision.

Question

If the data distribution, operating conditions and the missclassification costs do
not change from training to test set, and a model makes optimal predictions in the
training set. Do we need the exact probabilities in the test set to make optimal
decisions?

Answer: Yes.

Incorrect. Try another answer.

Answer: No.

Correct.
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