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What’s in this module?

For a machine learning classifier to be trustworthy, its outputs need to be meaningful.

In particular, if a classifier outputs probabilities they need to correspond to relative
frequencies of events in the world.

We will take a closer look at what this means, and how this can be achieved.
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Taking inspiration from forecasting

Weather forecasters started thinking about calibration a long time ago (Brier, 1950).
X A forecast ‘70% chance of rain’ should be followed by rain 70% of the time.
This is immediately applicable to binary classification:
X A prediction ‘70% chance of spam’ should be spam 70% of the time.
and to multi-class classification:

X A prediction ‘70% chance of setosa, 10% chance of versicolor and 20% chance of
virginica’ should be setosa/versicolor/virginica 70/10/20% of the time.

In general:

X A predicted probability (vector) should match empirical (observed) probabilities.
Q: What does ‘x% of the time’ mean?
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Forecasting example

Let’s consider a small toy example:
X Two predictions of ‘10% chance of rain’ were both followed by ‘no rain’.
X Two predictions of ‘40% chance of rain’ were once followed by ‘no rain’, and once
by ‘rain’.
X Three predictions of ‘70% chance of rain” were once followed by ‘no rain’, and
twice by ‘rain’.
X One prediction of ‘90% chance of rain’ was followed by ‘rain’.
Q: Is this forecaster well-calibrated?
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Over- and under-estimates
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This forecaster is doing a pretty decent job:

> ‘10% chance of rain’ was a slight over-estimate
(y=0/2=0%);

> ‘40% chance of rain’ was a slight under-estimate
(y =1/2 =50%);

> ‘70% chance of rain’ was a slight over-estimate
(V =2/3 = 67%);

> ‘90% chance of rain’ was a slight under-estimate
(y =1/1=100%).
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Visualising forecasts: the reliability diagram
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Figures generated with PyCalib (Perello-Nieto et al., 2021)
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Changing the numbers slightly
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Or should we group forecasts differently?
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Or not at all?
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Binning or pooling predictions is a fundamental notion

We need bins to evaluate the degree of calibration:
> In order to decide whether a weather forecaster is well-calibrated, we need to look
at a good number of forecasts, say over one year.
> We also need to make sure that there are a reasonable number of forecasts for
separate probability values, so we can obtain reliable empirical estimates.

X Trade-off: large bins give better empirical estimates, small bins allows a more
fine-grained assessment of calibration.
But adjusting forecasts in groups also gives rise to practical calibration methods:
> empirical binning
> isotonic regression (aka ROC convex hull)
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Why are we interested in calibration?

To calibrate means to employ a known scale with known properties.

X E.g., additive scale with a well-defined zero, so that ratios are meaningful.
For classifiers we want to use the probability scale, so that we can

> justifiably use default decision rules (e.g., maximum posterior probability);

> adjust these decision rules in a straightforward way to account for different class
priors or misclassification costs;

> combine probability estimates in a well-founded way.

Q: Is the probability scale additive?
Q: How would you combine probability estimates from several well-calibrated models?
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Optimal decisions |

Denote the cost of predicting class j for an instance of true class i as C(Y = j|Y = i).
The expected cost of predicting class j for instance x is

A~

C(Y=jX=x)=)_P(Y=iX=x)C(V =]y =1

where P(Y = i|X = x) is the probability of instance x having true class i (as would be
given by the Bayes-optimal classifier).
The optimal decision is then to predict the class with lowest expected cost:

V" = argmin C(V = j|X = x) = argmin Y P(Y =i|X =x)C(V =j|Y =)
j ] -
I

J
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Optimal decisions Il

In binary classification we have:
C(Y = +|X = x) = P(+]x)C(+[+) + (1 = P(+]x)) C(+]-)
C(¥ = —1X = x) = P(+IX)C(=[+) + (1 = P(+]x) C(-]-)
On the optimal decision boundary these two expected costs are equal, which gives

B C(+[-) — C(—-) 2
P(+]x) = CH=y=C(—[")Fec(—I=Cc{|+H ¢

This gives the optimal threshold on the hypothetical Bayes-optimal probabilities.
It is also the best thing to do in practice — as long as the probabilities are
well-calibrated!



Optimal decisions lli

Without loss of generality we can set the cost of true positives and true negatives to

zero; ¢ = chCiPcFN is then the cost of a false positive in proportion to the combined cost

of one false positive and one false negative.

X E.g., if false positives are 4 times as costly as false negatives then we set the
decision threshold to 4/(4 + 1) = 0.8 in order to only make positive predictions if
we’re pretty certain.

Similar reasoning applies to changes in class priors:

> if we trained on balanced classes but want to deploy with 4 times as many
positives compared to negatives, we lower the decision threshold to 0.2;

> more generally, if we trained for class ratio r and deploy for class ratio r’ we set
the decision threshold to r/(r + r').

Cost and class prior changes can be combined in the obvious way.



Common sources of miscalibration
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Common sources of miscalibration

Underconfidence: a classifier thinks it's worse at separating classes than it actually
is.
> Hence we need to pull predicted probabilities away from the centre.
Overconfidence: a classifier thinks it's better at separating classes than it actually is.
> Hence we need to push predicted probabilities toward the centre.

A classifier can be overconfident for one class and underconfident for the other, in
which case all predicted probabilities need to be increased or decreased.
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Underconfidence example

> Underconfidence typically gives sigmoidal
distortions.

> To calibrate these means to pull predicted
probabilities away from the centre.

Source: Niculescu-Mizil and

Caruana (2005)
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Overconfidence example

> Qverconfidence is very common, and usu-
ally a consequence of over-counting evid-
ence.

> Here, distortions are inverse-sigmoidal

> Calibrating these means to push predicted
probabilities toward the centre.

Source: Niculescu-Mizil and

Caruana (2005)
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Why fitting the distortions helps with calibration

In clockwise direction, the dotted arrows show:

> (1) using a point’s uncalibrated score on the
Xx-axis as input to the calibration map,

> (2) mapping the resulting output back to the
diagonal, and

> (3) combine with the empirical probability of
the point we started from.

The closer the original point is to the fitted cal-
ibration map, the closer the calibrated point (in
red) will be to the diagonal.

1.0

Empirical probability
o
®

e
[N)

’
0.0

ol
o

o
IS

&
--- Calibration map »
/ 4
/ /
/ /
/ ,
I
i ‘4
/‘._’,;‘3)
/ /
I
1,
e
q
)
o
M
/’I
= - - -
0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability

TA

ILOR



References

[d Niculescu-Mizil, A. & Caruana, R. (2005). Predicting good probabilities with supervised
learning. In 22nd international conference on machine learning (icml’05), ACM
Press.




A first look at some calibration
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A first look at some calibration techniques

Parametric calibration involves modelling the score distributions within each class.

X Platt scaling = Logistic calibration can be derived by assuming that the
scores within both classes are normally distributed with the same variance
(Platt, 2000).

X Beta calibration employs Beta distributions instead, to deal with scores
already on a [0, 1] scale (Kull et al., 2017).

X Dirichlet calibration for more than two classes (Kull et al., 2019).
Non-parametric calibration often ignores scores and employs ranks instead.

X E.g., isotonic regression = pool adjacent violators = ROC convex hull
(Fawcett & Niculescu-Mizil, 2007; Zadrozny & Elkan, 2001).




Platt scaling
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Beta calibration
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Isotonic regression
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What'’s so special about multi-class calibration?

Similar to classification, some methods are inherently multi-class but most are not.

This leads to (at least) three different ways of defining what it means to be fully
multiclass-calibrated.
X Many recent papers use the (weak) notion of confidence calibration.

Evaluating multi-class calibration is in its full generality still an open problem.
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Definitions of calibration for more than two classes
The following definitions of calibration are equivalent for binary classification but
increasingly stronger for more than two classes:
Confidence calibration: only consider the highest predicted probability.
Class-wise calibration: only consider marginal probabilities.

Multi-class calibration: consider the entire vector of predicted probabilities.
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Confidence calibration

This was proposed by Guo et al. (2017), requiring that among all instances where the
probability of the most likely class is predicted to be c, the expected accuracy is c.
(We call this ‘confidence calibration’ to distinguish it from the stronger notions of
calibration.)

Formally, a probabilistic classifier p : X — Ay is confidence-calibrated, if for any
confidence level ¢ € [0, 1], the actual proportion of the predicted class, among all
possible instances x being predicted this class with confidence c, is equal to c:

P(Y =i|pi(x)=c)=c  where i = argmaxpj;(x).
J




Class-wise calibration

Originally proposed by Zadrozny and Elkan (2002), this requires that all one-vs-rest
probability estimators obtained from the original multiclass model are calibrated.

Formally, a probabilistic classifier p : X — Ay is classwise-calibrated, if for any class
i and any predicted probability g; for this class, the actual proportion of class i, among
all possible instances x getting the same prediction p;(x) = gq;, is equal to g;:

P(Y=i|pi(x)=q)=q fori=1,... k




Multi-class calibration

This is the strongest form of calibration for multiple classes, subsuming the previous
two definitions.

A probabilistic classifier p : X — Ay is multiclass-calibrated if for any prediction
vector q = (g, ..., qk) € Ak, the proportions of classes among all possible instances
x getting the same prediction p(x) = q are equal to the prediction vector q:

P(Y=i|p(x)=q)=q; fori=1,... k.




Reminder: binning needed

For practical purposes, the conditions in these definitions need to be relaxed. This is
where binning comes in.

Once we have the bins, we can draw a reliability diagram as in the two-class case.
For class-wise calibration, we can show per-class reliability diagrams or a single
averaged one.

The degree of calibration is assessed using the gaps in the reliability diagram. All of
this will be elaborated in the next part of the tutorial.




Important points to remember
Only well-calibrated probability estimates are worthy to be called probabilities:
otherwise they are just scores that happen to be in the [0, 1] range.

Binning will be required in some form:
instance-based probability evaluation metrics such as Brier score or log-loss
always measure calibration plus something else.

In multi-class settings, think carefully about which form of calibration you need:
e.g., confidence-calibration is too weak in a cost-sensitive setting.
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