
New Ways of Publishing: A Roadmap to
Authoring Online Training Material

Contents
Charting the landscape

From static and dynamic to interactive content

Some itineraries through the landscape

Concluding remarks

Appendix A: Open Courses

Appendix B: Development environment

References

 jupyterjupyter bookbook

This website provides a set of guidelines to publish online training material using state-of-the-art web authoring tools, and also
serves as an example authored using the Jupyter Book framework for producing documents from computational content. It
has been prepared as a deliverable of the TAILOR Network of Trustworthy AI through Integrating Learning, Optimisation and
Reasoning as part of Work Package 9: Network Collaboration, and is made freely available to the academic community.

These new authoring and formatting tools give rise to new ways of working and publishing. For example, Jupyter

Notebooks [1] can be used in teaching, for self-study, as lab notebooks, for research collaborations, and in a host of other
ways. But there are many other recent developments that open further avenues for authoring and publishing dynamic and
interactive training material. Knowing about these developments and opportunities helps academic writers to publish their
training material in the best possible forms.

This roadmap therefore has twin objectives:

to chart the ever-growing landscape of publishing workflows, formatting tools and authoring tools;

to provide some itineraries through this landscape, such as converting an existing LaTeX Beamer presentation to
Quarto .

The companion website https://tailor-uob.github.io/mooc_trustworthy_ai/ shows the rendered results. The content can be
viewed in a variety of ways, following the Single-In-Multiple-Out paradigm.

We prepared this material for an audience with experience in authoring AI-related training material using well-
established tools such as LaTeX, Overleaf, Google Docs etc. You will learn about the latest tools and frameworks
such as Jupyter Book and Quarto . These tools make it easier to deliver content in a variety of ways, and also
offer the opportunity to add interactive elements. We give examples of possible workflows to get you started.

Who should read this

file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_downloads/7a487c24d64c2529c08dc3a91bdb2558/nwop_book.pdf
file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_downloads/7a487c24d64c2529c08dc3a91bdb2558/nwop_book.pdf
https://tailor-network.eu/
https://tailor-network.eu/
https://tailor-uob.github.io/mooc_trustworthy_ai/

[1]

The structure of the document is fairly self-explanatory.

If your main experience is with tools such as LaTex and Google Docs, you probably want to read the whole
document.
If you already have experience with Jupyter Book and the markdown format, you may want to skip to
Formatting tools which describes the most recent developments, and follow on from there with the From static
and dynamic to interactive content section which gives many examples of static, dynamic and interactive
content.
If you are particularly interested in how to produce Quarto content, head to Some itineraries through the
landscape which provides concrete use cases of authoring training material using Quarto , the rendered output
of which can be viewed on the companion website.

The full table of contents is given in the panel on the left, each element of which is a separate webpage. You can step
through these pages in order by following the Next link at the bottom of each page. If the page has an internal
heading structure this is indicated in a panel on the top-right. The Jupyter Book button at the top downloads the
entire website as a single PDF file.

This is a near-final draft currently under review.

Jupyter Book and Jupyter Notebook are related but different, see Dynamic content.

Charting the landscape
The landscape of tools for authoring and publishing training material is vast, and creating new or upgrading legacy material
may appear daunting in the face of all available options. This roadmap surveys the landscape and provides actionable
guidelines for publishing modern online training materials with state-of-the-art tools. We focus on Publishing workflows that
use standard authoring artefacts (such as plain text, tables and figures) that can generate multiple publishing outputs (like
slides, websites, pdfs, or documents).

The proliferation and adoption of the World Wide Web has allowed the modernisation of teaching material that is cross-
platform and dynamic. Examples of modern teaching material include online videos (e.g. Khan Academy), online exams (e.g.
Massive Open Online Courses or MOOCs), personal blogs with commenting facilities, and animated or interactive illustrations.
However, large parts of the currently available teaching material still focus on printable formats, with the possible addition of
hyperlinks for online delivery.

The lack of standards for publishing hinders the adoption of authoring formats and increases the efforts to improve individual
publishing workflows. Furthermore, the time spent getting familiar with one technology may not be productive in future with the
rapidly changing publishing environment. Additionally, multiple publishing outputs require different input formats which forces
the duplication of efforts to produce very similar material (e.g. printed pdf, website, blog post, slides, posters).

This roadmap provides an introduction to modern Authoring tools and Formatting tools. We explore the most broadly adopted
authoring and publishing platforms, as well as online collaboration tools to facilitate the creation of shared online material. We
pay special attention to the possible standardisation of a workflow to minimise the effort of authoring artefacts while
maximizing the range of output modalities. Two such publishing systems are Jupyter Book and Quarto for which multiple
examples are provided.

We also provide some use-case examples of a full workflow to generate online training material (and this website is in fact one
of them). All material is kept in the GitHub version control environment to maximise transparency and reproducibility while
allowing the automatic generation of the output artefacts with GitHub Actions . The input artefact is constructed in such a

How to read this

Note

https://tailor-uob.github.io/mooc_trustworthy_ai/

way that multiple types of output formats can be generated automatically from them (e.g. formats like an HTML website,
reveal.js slides, online or print PDFs, and e-books).

Publishing workflows
The publishing workflow is the process in which external resources are prepared and collated together with the help of an
authoring tool and subsequently rendered with a formatting tool to generate a publishable output that can be delivered in

various forms. This is visualised by the following figure.[1]

(1)

External resources

(2)

Authoring tool

(3)

Text + Figures +

Code + Tables + ...

(4)

Formatting tool

(5)

Formatted

Output

(6)

Delivery system

An example of a publishing workflow is the following. A research group may carry out an investigation which ends up with (1)
data, figures, analyses, and results, those resources are put together with an (2) authoring tool like Overleaf which produces
an (3) organised hierarchy of files and text that includes formatting information, then using a (4) formatting tool like pdfLaTeX
all the artefacts are combined into a (5) pdf document that can be (6a) printed as a stand-alone document, or (6b) included
into the proceedings of a conference.

For the purposes of this roadmap we emphasise the difference between the authoring and the formatting steps of the
full publishing workflow. The authoring step consists in creating a structured composition of input artefacts that are
necessary to generate the intended publication through formatting.

The creation of research or academic material usually involves the production of slides, documents, posters and other output
formats from the same material. In this roadmap, we are interested in workflows to generate this multitude of outputs
minimising the authoring effort. Here, we describe two types of paradigms which were discussed in the previous TAILOR
deliverable D9.3 [SF21]: Single-In-Single-Out (SISO) and Single-In-Multiple-Out (SIMO).

Single-In-Single-Out

Formatting tools commonly specialise in generating only one type of output from one or more input files. This is one of the
most common approaches when producing an article for publication in a journal or conference proceedings. The text, figures,
tables and other artefacts are assembled with some authoring tool and compiled with a specialised formatting tool to produce
a printable pdf.

Once the paper has been accepted by a conference, a presentation will need to be prepared, often using different formatting
tools. It is then common to have duplicates of the same content with mild modifications in a separate environment. The same
process is often repeated if a poster, computational notebooks, or a website need to be created. We refer to this paradigm of
publishing system as Single-In-Single-Out as each system works independently, while the authors need to keep up to date
copies of similar content in each of them.

Note

External sources

Various modifications

Text + Figures +

Code + ... v.1

Text + Figures +

Code + ... v.2

Text + Figures +

Code + ... v.3

Text + Figures +

Code + ... v.4

Formatting tool 1

Formatting tool 2

Formatting tool 3

Formatting tool 4

Published

Paper

(PDF)

Presentation

Slides

(PPTX/PDF)

Poster

(PPTX/PDF)

Computational

Notebook

(Colab)

Common examples of this type of paradigm are the authoring and publishing workflows for creating

text documents with Microsoft Word, Libre Office Writer, LaTeX;

slide decks with Microsoft PowerPoint, LibreOffice Impress, LaTeX Beamer, Reveal.js, or Google Slides; and

posters with Microsoft Publisher, Google Slides, LaTeX, etc.

Single-In-Multiple-Out

More recent publishing systems allow the generation of multiple types of publication formats from a joint set of input artefacts.
We refer to this paradigm as Single-In-Multiple-Out (SIMO). This paradigm offers various benefits, among them:

keeping the artefacts in a single, well-defined location which facilitates consistency, management and findability;

keeping a unique source of history changes and versions which is useful for auditing and transparency; and

not duplicating artefacts that are not changed between different publishing systems.

Text + Figures +

Code + ...
Formatting tool

Published

Paper

(PDF)

Presentation

Slides

(PPTX/PDF)

Poster

(PPTX/PDF)

Computational

Notebook

(Colab)

https://www.microsoft.com/en-gb/microsoft-365/word
https://www.libreoffice.org/discover/writer/
https://www.latex-project.org/
https://www.microsoft.com/en-gb/microsoft-365/powerpoint
https://www.libreoffice.org/discover/impress/
https://ctan.org/pkg/beamer
https://revealjs.com/
https://workspace.google.com/intl/en_uk/products/slides/
https://www.microsoft.com/en-gb/microsoft-365/publisher

[1]

Nowadays, the SIMO type of formatting tool is becoming more common, and we focus on the state-of-the-art formatting tools
that fall into this category in this roadmap. The roadmap document itself is an example of one particular tool (Jupyter Book),
while the rest of the document and use cases also include examples built with Quarto . A description of these and other
publishing tools is provided with more detail in the next section Formatting tools.

In this roadmap we do not cover (1) the process of generating the external resources and (6) the delivery system.
However, note that the delivery system may have some impact on the formatted artefact, even within the same format.
For example, hyperlinks should ideally be handled differently for printed and online PDFs.

Formatting tools
Formatting tools take input artefacts produced by authoring tools and produce publishable formatted output. While many of
the authoring tools discussed in the previous section are well-known, there have been many recent developments in formatting
tools that deserve to be better known in the academic community as they take opportunities for publishing training material to
the next level. In the previous section we described the two paradigms Single-In-Single-Out (SISO) and Single-In-Multiple-Out
(SIMO). In this section we describe some formatting tools that can be used for the SIMO paradigm.

Quarto, pdflatex, xelatex, pandoc, ...

Formatting tool
Text + Figures +

Code + Tables + ...

Formatted

Output
External resources Authoring tool

Pandoc

Pandoc is a tool to convert files between multiple markup formats. Pandoc is used within more generic tools such as Quarto. It
is customizable thanks to a Haskell library and a template system to feet your needs. It is able to generate bibliographies,
footnotes, LaTeX math, tables, definitions, and most common publication assets. Some supported formats are lightweight
markup (Markdown, reStructuredText, AsciiDoc, Textile, Emacs Org-Mode, …), HTML, Ebooks, TeX, word processing (docx,
rtf, odt), wiki markup, slide show (LaTeX Beamer, reveal.js, Microsoft PowerPoint, …), and even PDF (via pdflatex, lualatex,
xelatex, latexmk and others).

Sphinx
Sphinx is an open-source documentation engine that is based on Docutils; extending it to multi-page documentation. Docutils
is an open-source text processing system that uses the plain text easy-to-read reStructuredText to create documentation in
multiple formats, such as HTML, LaTeX, Linux man pages, OpenDocument, or XML. Sphinx supports reStructuredText and
MyST markdown as input files and can generate multiple output formats including HTML, LaTeX, PDF, ePub, and Texinfo (the
official documentation format of the GNU project).

Jupyter Book

Jupyter Book is one of the main projects of the Executable Books Project, together with the other project MyST Markdown.
The Executable Books Project is an international collaboration to build open-source tools for publishing computational
documents based on the Jupyter ecosystem. Jupyter Book can read markdown, MyST Markdown, Jupyter notebooks
and reStructuredText. It is based on the Sphinx documentation engine being able to produce html websites, pdf, and
computational narratives. It supports multiple programming languages in the Jupyter notebooks provided that a Jupyter kernel
exist (e.g. Python, Julia, Rubi, Haskell, and many other languages).

Websites that include computational narratives can also benefit from live environments thanks to the integration of Binder,
Thebe and Google Colab. It supports multiple types of narrative content like highlighted notes, code cells, quotations,
epigraphs, glossaries, index of terms, footnotes, references, grids, cards, dropdown menus, tab content, maths, equations,

https://pandoc.org/
https://www.sphinx-doc.org/en/master/
https://docutils.sourceforge.io/
https://linux.die.net/man/
https://en.wikipedia.org/wiki/OpenDocument
https://en.wikipedia.org/wiki/XML
https://www.gnu.org/software/texinfo/
https://www.gnu.org/
https://jupyterbook.org/en/stable/intro.html
https://executablebooks.org/en/latest/
https://executablebooks.org/en/latest/tools/#tools-myst
https://jupyter.org/
https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/en/master/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://colab.research.google.com/

proofs, theorems, algorithms, and more. The Jupyter Book system has been used in multiple ocasions to publish online
material, an extensive gallery can be found at https://executablebooks.org/en/latest/gallery/. This roadmap has been created
with Jupyter Book and serves as an example of some of its functionalities. Another great example of a collaboratively
authored Jupyter Book is the TAILOR Handbook of Trustworthy AI.

R markdown
R markdown is a flavoured markdown type with special focus on the R programming language and a publishing system. The
publishing system uses R markdown files (with extension .rmd) or standard markdown and can produce various output
formats including HTML, PDFs, Microsoft Word documents, Beamer presentations, HTML5 slides, scientific articles and books
(with the the help of the bookdown R package. It also support other programming languages including Python, SQL and others
with a language engine. R markdown is also integrated in Rstudio.

Bookdown
Bookdown is an open-source R package that facilitates the creation of books from R Markdown documents. It is an extension
for R Markdown to work with long documents. The rest of the functionalities are shared with R Markdown. A list of books
written with Bookdown can be found at https://bookdown.org/home/archive/.

Quarto

Quarto is another open-source publishing system with the objective of facilitating the collaboration to create scientific content.
Quarto is sponsored by Posit, and follows the development of the R Markdown publishing system extending the focus from the
programming language R to Python, R, Julia and Observable. It supports Jupyter notebooks, markdown and their own
extension Quarto markdown. The conversion to different output formats is done with pandoc, which is able to produce
presentations (Reveal.js), dashboards, websites, blogs, books, PDFs, Microsoft Word, ePub and more. Quarto is integrated
into multiple authoring environments like Microsoft Visual Studio, Jupyter Lab, Rstudio, and Atlassian Confluence among
others.

Reveal.js
Reveal.js is an open-source framework for in-browser presentations. It supports features like animations, export to PDF, an
intuitive navigation of the slides, speaker notes, Markdown support, LaTeX support, laser-like pointer, and drawing tools.
reveal.js presentations can be authored in markdown, HTML or a mix using any text editor and served locally using the

Jekyll static website generator. The following HTML code is a fully working reveal.js presentation

reveal.js is directly supported by formatting tools inclusing Quarto , Jupyter Notebook , and pandoc .

<html>
 <head>
 <link rel="stylesheet" href="dist/reveal.css" />
 <link rel="stylesheet" href="dist/theme/white.css" />
 </head>
 <body>
 <div class="reveal">
 <div class="slides">
 <section>Slide 1</section>
 <section>Slide 2</section>
 </div>
 </div>
 <script src="dist/reveal.js"></script>
 <script>
 Reveal.initialize();
 </script>
 </body>
</html>

https://executablebooks.org/en/latest/gallery/
https://tailor-network.eu/handbook/
https://rmarkdown.rstudio.com/
https://bookdown.org/
https://bookdown.org/yihui/rmarkdown/language-engines.html
https://posit.co/download/rstudio-desktop/
https://bookdown.org/
https://bookdown.org/home/archive/
https://quarto.org/
https://posit.co/
https://pandoc.org/
https://posit.co/download/rstudio-desktop/
https://www.atlassian.com/software/confluence
https://revealjs.com/
https://jekyllrb.com/

Building on several of these formatting tools, d2l-book is a Python package and a toolkit to build online and printed
books, in support of the Dive into Deep Learning book [ZLLS23]. The authoring formats are mainly MyST markdown
and Jupyter Notebooks. Formatting is done with pandoc and Sphinx.

Authoring tools
Authoring tools facilitate the creation of input artefacts (e.g. plain text, markup language, tables, figures, code, or equations)
which will be compiled and rendered by a formatting tool to generate publishable outputs. For example, a markup language
editor to create LaTeX is an authoring tool, while pdflatex , XeLaTeX , or LuaTeX are formatting tools that compile input
artefacts to pdf. These tools need to integrate metadata about the format in which the artefacts need to be formatted in
different output types. For example, the font of the text and its position, the position of figures, tables and other elements. In
this roadmap we focus on authoring tools that can be used for the purpose of multi-output publishing systems. We provide
some guidelines on the type of files that need to be considered during the authoring process, which tools can directly help on
the generation of those artefacts. We consider the collaboration of teams in the authoring process as a desirable feature.

Vim, NeoVim, Notepad

Text + Code +

Tables + ...
Authoring toolExternal resources Formatting tool

Formatted

Output

Authoring tools that do not incorporate part of the formatting are rare, as it is common to provide at least a preview of the
formatted output. Examples of authoring that can be separated from the formatting step are simple text editors like vim,
NeoVim, Notepad, and general-purpose Integrated Development Environments (IDEs).

Authoring with formatting
There are authoring tools that incorporate a formatting tool. While in some situations it is a good practice to separate the
two aspects, some computer programs integrate them in one tool that may (or may not) provide access to the intermediate
artefacts. For example, Overleaf provides an online collaborative authoring platform that integrates with pdfLatex in the back-
end.

IDE + Quarto, HackMD, Notion, Typst, Overleaf...

Text + Figures +

Code + Tables + ...
Authoring tool Formatting tool

Formatted

Output
External resources

WYSIWYG (What You See Is What You Get)

WYSIWYG editors provide an interface to write rich text documents like Microsoft Word, Libre office, or Google Docs. Such
files are difficult to convert automatically to other formats as they do not separate the source text from the presentation layer.
Benefits include the possibility of collaborative editing, which comes at the expense of reduced control over formatting.

Libre Office, Google Docs, Microsoft Word, ...

Formatted

Output
Authoring and Formatting toolExternal resources

D2L-Book: A Toolkit for Hands-on Books

https://github.com/d2l-ai/d2l-book
https://d2l.ai/

Markup language editors
These editors separate the source text from the publishable output. Unlike WYSIWYG editors they typically have a dual-pane
user interface with one pane displaying the editable source and the other pane providing a preview. Overleaf is an online
collaborative authoring tool that allows the edition of LaTeX files, managing the errors and generating PDF files with a LaTeX
compiler. However the free tier has some collaboration limitations. HackMD, Notion and Typst are other online collaborative
text editing tools that can be used for authoring publishable material and work with markdown files.

Integrated Development Environments

The separation of the source code and the publishable outputs is something that all Integrated Development Environments
(IDEs) provide. These are tools for writing computer programs that commonly require a compilation phase which is usually
integrated in the same tool. The idea of authoring tools that can create generic input artefacts that are later combined by a
formatting tool is very similar to the common process followed in programming compiled programming languages. This has
facilitate the adoption of IDEs as authoring tools. Microsoft Visual Studio and Posit Workbench (formerly RStudio) have tools to
work with the Quarto environment. Both of them provide options for collaborative and contemporaneous editing.

Computational notebook editors

Jupyter Notebooks are documents that offer computational narratives by interlacing formatted markdown text and
executable code cells, providing the output as additional content. The idea has been adopted by other platforms that have
created similar notebook environments. Most of these platforms can convert the resulting computational narratives into various
formats like html, pdf, or text documents. Jupyter Notebook and JupyterLab offer the official environment for the original
Jupyter Notebooks . All of the following projects offer cloud-based platforms to edit Jupyter Notebooks or similar. Google

Colab is hosted by Google and free for low-intensive programs, Kaggle Notebooks is hosted by Kaggle which focuses on
Python for Data Science, and Machine Learning, offering a free solution to participate into Kaggle competitions. Microsoft
Azure Notebooks is hosted in Azure and focused on Data Science and Machine Learning with CPUs and GPUs available. It
supports various programming languages Python, R, F# and Julia, among others. Other platforms that are similar to support
functionalities similar to Jupyter Notebook are CoCalc, JetBrains Datalore, Deepnote, Hex, Pluto.jl, Nextjournal, and
Starboard. In particular JetBrains Datalore integrates with the JetBrains ecosystem tools such as the IDEs PyCharm and
IntelliJ.

From static and dynamic to interactive content
In this section we provide a range of examples of the kinds of content that can be authored with publishing systems such as
Jupyter Book and Quarto . We consider three different types of content:

Static content is rendered during the creation of the website/book and is kept static;

Dynamic content includes computational code cells that are rendered during the creation of the website/book but can be
modified and re-run on demand; and

Interactive content provides interactive elements such as buttons, sliders, interactive figures and more. Many more
examples can be found in the documentation of Quarto and Jupyter Book.

Computational infrastructure
An important consideration when designing online teaching material is the location where the material will be hosted and
served. The host capabilities may affect the type of content that can be included. For example, the content of this roadmap is
being hosted as a static webpage thanks to the free service offered by GitHub pages. However, most free hosting services do
not provide computational capabilities for dynamic or interactive functionalities. For instance, the Dynamic content material is
visualised as a static web page by Github pages but the same content can be run by a third party server for its dynamic
functionalities. Services such as MyBinder and Google Colab, offer free tier versions but they may be slow or fail to run for

https://www.overleaf.com/
https://hackmd.io/
https://www.notion.so/
https://typst.app/
https://posit.co/products/enterprise/workbench/
https://posit.co/download/rstudio-desktop/
https://jupyterlab.readthedocs.io/en/latest/
https://colab.research.google.com/
https://colab.research.google.com/
https://www.kaggle.com/notebooks
https://notebooks.azure.com/
https://notebooks.azure.com/
https://cocalc.com/
https://datalore.jetbrains.com/
https://deepnote.com/
https://hex.tech/
https://plutojl.org/
https://nextjournal.com/
https://starboard.gg/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/idea/
https://quarto.org/docs/guide/
https://jupyterbook.org/en/stable/intro.html
https://pages.github.com/

various reasons (e.g. connection errors or high server workload). Parts of the Interactive content of the roadmap may also
require a third party service. Additional information about these requirements is specified when showcasing each example.

Static content
Prior to the World Wide Web, static content was the only type of content that could be published. It is primarily content that
can be printed without loss of information, the most common forms of which are text, tables and figures. More broadly, static
content is authored once after which it is formatted and rendered the same every time. We therefore also include basic video
and audio in this category. In this section we provide several examples on how to produce static content in Jupyter Book
and Quarto .

Both formatting systems are capable of reading Markdown and Jupyter Notebooks and convert them to a variety of output
formats. They support particular versions of Markdown as there is no Markdown standard yet. Quarto has its own Quarto
markdown with extension .qmd , while Jupyter Book uses MyST Markdown .

Markdown
Markdown is a markup language to create formatted text from plain text that can be easily read by humans. Markdown was

initiated in 2004 by John Gruber and Aaron Swartz to convert plain text to html [KW17]. However, there is still no consensus on

concrete specification because of unsolved issues[1], which has created diverging versions of markdown. In 2014 an
unambiguous specification was released by Markdown contributors under the name of CommonMark.

Roles and Directives
MyST Markdown provides roles and directives in order to extend the basic functionalities of Markdown. By defining a set of
terms and how to interpret the code on it via extensions, which may be already integrated in Jupyter Book.

Roles are used in-line and have the form {rol-name}`role content` for example the role {math}`E=mc^2` is rendered as
.

Similarly, directives are multi-line versions of the form

Examples of directives can be found in Callout Blocks.

Callout Blocks
Callout Blocks are special boxes with a colored title and a main textual content. These can be created with different directives
with {note} being a common example.

Here is a note.

E = mc2

```{directive-name} arguments
:key1: val1
:key2: val2

Content of 
the directive
```

```{note}

Here is a note.
```

Note

The content of a callout block can be hidden by adding the optional tag :class: dropdown

Other types of notes can be created with the directives attention , caution , danger , error , important , warning ,
tip , seealso , and more that can be found at https://mystmd.org/guide/directives. The following are three examples.

Tip note.

Attention note.

Error note.

It is possible to personalise your own notes with {admonition}

with personalised title and body text.

Diagrams

With additional directives it is possible to create diagrams from plain text. There are multiple sphinx plugins that can be
installed in Jupyter Book and some that are already integrated in Quarto . In this section we show some examples. The
Mermaid diagramming and charting tool allows the creation of a multitude of diagrams including flowcharts, sequences,
mindmaps and more. There is an online live editor that allows the exploration of various examples, modification and creation of
new diagrams in the following link https://mermaid.live/edit. WaveDrom is another rendering engine to draw timing diagrams.
Some examples can be found below.

Mermaid flowchart

```{note}
:class: dropdown

Hidden text.
```

Hidden text.

```{mermaid} 
flowchart TD
  A[square node A] --> B(round edges node B)
  A --> C([stadium node C])
  B --> D[[subroutine node D]]
  B --> E[(database node E)]
  B --> F((circle F))
  C --> F
```

Note

Tip

Attention

Error

This is a warning block

https://mystmd.org/guide/directives
https://mermaid.js.org/
https://mermaid.live/edit
https://wavedrom.com/

square node A

round edges node B stadium node C

subroutine node D database node E circle F

Mermaid sequence diagram

Example of a sequence diagram with Mermaid showing the interactions between a web developer, the hosting and a client
web browser.

Web developer Hosting server Client web browser

loop [Read]

User clicks a link

Upload webpage source files

Request specific web page

Provide requested web page

User navigates the page

Request another page

Provide requested web page

Web developer Hosting server Client web browser

Mermaid mindmap

```{mermaid}
sequenceDiagram

participant Web developer
participant Hosting server

  participant Client web browser
Web developer->>Hosting server: Upload webpage source files

  Client web browser->>Hosting server: Request specific web page
  Hosting server->>Client web browser: Provide requested web page

loop Read
Client web browser->Client web browser: User navigates the page

end
  Note right of Client web browser: User clicks a link
  Client web browser->>Hosting server: Request another page
  Hosting server->>Client web browser: Provide requested web page
```


Data Science

Statistics

Surveys

Experiments

Scientific Computing

Scientific Methods

Hypothesis Testing

Evaluation

Processes

Parallel Programming

Crawlers

Algorithms Systems

High Performance
Computing

Personal Computers

Distributed Computing

WaveDrom timing diagrams

WaveDrom can draw timing diagrams.

clk

bus head body tail

wire

Cross-references

Published documents often have internal references to other content in the document. By default, all the titles have their own
anchor points (move the mouse cursor on top of a title to see a # symbol indicating a clickable anchor point). It is possible to
reference sections within the same page by creating a link writing the full title in lower case and dashes instead of spaces like
[](cross-references) which creates a link like cross-references . With this method it is not possible to reference other

pages; e.g. the link conclusions should not work but Static content does work. A more flexible method is to manually indicate
anchor points in titles, figures, tables and other content. By adding a label before a title as follows

```{mermaid}
mindmap
  root((Data Science))
    Statistics
      Surveys
      Experiments
    Scientific Computing
    Scientific Methods
      Hypothesis Testing
      Evaluation
    Processes
      Parallel Programming
      Crawlers
    Algorithms
    Systems
      High Performance Computing
      Personal Computers
      Distributed Computing
```

```{wavedrom}
{ signal : [
  { name: "clk",  wave: "p......" },
  { name: "bus",  wave: "x.34.5x",   data: "head body tail" },
  { name: "wire", wave: "0.1..0." },
]}
```

https://wavedrom.com/

the section can be references with [](my-label) or the more flexible role {ref}`my-label` . For example the code
[](sec:conclusion) and {ref}`sec:conclusion` will generate a link to the Concluding remarks.

Labels can also be added to figures, tables and equations within their own directive tags. For example, in the {figure}
directives the tag name specifies the label.

The previous code generates the next figure that can be referenced in multiple ways.

Fig. 1 Caption of the example figure number 1

Tables use the tag name

(my-label)=
Section title

Code Result

[](sec:conclusion) Concluding remarks

[Textual description](sec:conclusion) Textual description

{ref}`sec:conclusion` Concluding remarks

```{figure} images/example.svg
:name: fig:ex:1

Caption of the example figure ex1
```

Code Result

[](fig:ex:1) Caption of the example figure number 1

[Textual description](fig:ex:1) Textual description

{ref}`fig:ex:1` Caption of the example figure number 1

{numref}`fig:ex:1` Fig. 1

{numref}`Figure %s and more text <fig:ex:1>` Figure 1 and more text

```{table} Caption of the table ex1
:name: tab:ex:1

| header 1 | header 2 |
| -------- | -------- |
|    a     |    b     |
```

Table 1 Caption of the table ex1

header 1 header 2

a b

Finally, equations use the tag label

(1)

And can only be referenced by their number

Quarto has its own way of making cross references which can be consulted in their documentation (Quarto cross
references).

Code segments
Another common aspect of documents in STEM (Science, technology, engineering, and mathematics) is the publication of
short extracts of pseudocode or source code. Markdown languages usually support the highlight of code based on the
different programming language specifications.

For example the following code is for Python

while the following code is written in ANSI C

Inline-tabs
Some interactive books that contain code may be aimed at diverse audiences with different background programming
knowledge. For those cases, MyST Markdown can create tabs to select which content to display. The following is an example
of Python and C++ code:

Code Result

[](tab:ex:1) Caption of the table ex1

[Textual description](tab:ex:1) Textual description

{ref}`tab:ex:1` Caption of the table ex1

{numref}`tab:ex:1` Table 1

{numref}`Figure %s and more text <tab:ex:1>` Figure 1 and more text

```{math}
:label: eq:ex:1

E = mc^2
```

E = mc2

Code Result

[](eq:ex:1) (1)

{eq}`eq:ex:1` eq:ex:1

print("Hello world!")

#include <stdio.h>

int main() {
 printf("Hello world!");
 return 0;
}

https://quarto.org/docs/authoring/cross-references.html
https://quarto.org/docs/authoring/cross-references.html

Tab choices persist across code segments:

Citations and bibliography

It is possible to add citations and a bibliography using a bibtex file. For example, the references in this webpage are all
stored in the  ../references.bib file. The bibliography can be inserted in any particular section with the directive
{bibliography} . The current References section contains the following markdown content:

Once a bibliography has been added in the document, it is possible to cite any of the references with the {cite} role. The
following role {cite}`sokol21` will generate the citation [SF21], which provides information about the reference when
hovering the mouse over it. The list of references in the bibliography will only contain those reference that are cited at least
once in the whole website.

Videos

The wide spread of personal computers, smart phones and tables has accelerated the content of audiovisuals in the internet
and streaming services. Furthermore, It is common that in academic and teaching contexts the same lessons are repeated
multiple times to different audiences. This makes recorded audiovisual content well suited to reduce the limited time
commitment of the teachers, while maximising the reach of the content. There are multiple online services to host video
material with YouTube, Vimeo, and SlidesLive being the most well known.

Most video hosting services offer ways to embed their videos into any html website by using the iframe tag. The following
is an example of a video hosted in YouTube

which is rendered like this

def main():
 return

print("Hello World!")

(sec:references)=
References

```{bibliography}
```

<iframe width="560" height="315"
src="https://www.youtube.com/embed/4kwEMHZJx5A" title="YouTube video player"
frameborder="0" allow="accelerometer; autoplay; clipboard-write;
encrypted-media; gyroscope; picture-in-picture; web-share"
allowfullscreen></iframe>

Python C++

Python C++

file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_downloads/33e59b5ca9ec342068223d604c3f8d55/references.bib
https://youtube.com/
https://vimeo.com/
https://slideslive.com/

[1]

Classifier Calibration Tutorial, ECML-PKDD -- Part 1: CalibratClassifier Calibration Tutorial, ECML-PKDD -- Part 1: Calibrat……

https://talk.commonmark.org/t/issues-we-must-resolve-before-1-0-release-6-remaining/1287

Dynamic content
Dynamic content is content that includes computational code that is executed when the website/book is built. With extra
configurations, the content can be re-run in real time locally or with a third party service like MyBiner, Google Colab, or others.
This type of content is very useful for educational material in science, technology, engineering and mathematics. Jupyter
Notebooks and other programming environments that integrate a textual narrative, computational cells and their results are
really common. Publishing systems like Jupyter Book and Quarto support multiple ways to write this type of material by
using directives (See Roles and Directives) for code in markdown files, or directly using Jupyter Notebooks. This section
serves as an example of the functionalities that can be integrated in a Markdown file in a Jupyter Book. We also indicate what
are the differences in the Quarto publishing system when necessary.

Configuration
Adding dynamic content that changes during the execution requires the specification of a kernel which is able to read the code
indicated in the apropiate directives and produce an ouptut result. This configuration differs slighly depending on the platform
and the type of file (e.g. markdown and Jupyter Notebook).

Jupyter Notebook files

Jupyter Notebooks are web-based documents that combine a textual narrative (written in a markup language) with
computational elements (supporting a multitude of programming languages). The code of the notebooks can be executed with
the help of a kernel; a programming language specific process that can interpret the code, run it and provide the results to the
authoring application. The default kernel is the ipykernel built on top of IPython. Common functionalities added via the code
cells are the generation of figures, tables, plots, and interactive elements and the analysis of data. Jupyter Notebooks have a
file extension .ipynb and can be edited with authoring tools like Jupyter Notebook , Jupyter Lab , Google Colab, and
most integrated development environments (IDEs) like PyCharm, Microsoft Visual Studio, Posit, and RStudio (See also
Computational notebook editors).

In Jupyter Book and Quarto projects the configuration of Jupyter Notebooks is general across the project. However,
Quarto requires a Raw cell at the beginning of the notebook with the title , author , and any additional options that you

want to include in order to be rendered. The following is a configuration example for Quarto :

https://www.youtube.com/watch?v=4kwEMHZJx5A
https://talk.commonmark.org/t/issues-we-must-resolve-before-1-0-release-6-remaining/1287
https://docs.jupyter.org/en/latest/projects/kernels.html
https://github.com/ipython/ipykernel
https://ipython.org/

Markdown files

In Jupyter Book , Markdown files with dynamic content require a YAML configuration in the header indicating some
parameters about the type of file and the kernel to use. There are kernels for different programming languages like R, Python,
Julia, and more. For example, the markdown file for this page has been configured to run Python3 with the following yaml
configuration

The header can be generated automatically with the help of the jupyter-book tool by running the following command in a
terminal at the root of the project

Additional documentation can be found at https://jupyterbook.org/en/stable/file-types/myst-notebooks.html.

Running Python code in the Quarto publishing system requires the jupyter Python package and the specification of the
python command to use in the YAML header or in the _quarto.yml configuration file.

Live code

In Jupyter Book , Thebe offers a solution to launch the kernel in the current page (without the need to jump to a third party
website). The web page you are currently reading has been configured to run Thebe with the third party service MyBinder.
This was achieved by adding the following line of code before the first title of the markdown document:

The top of the page now displays the spaceship icon. You can launch Thebe by clicking on it and select Live code in the
drop down menu:

title: Title of the page
authors: "Miquel Perello Nieto"
date: "July 11th, 2024"
format:
 html: default
 pdf: default
 refealjs: default

jupytext:
 cell_metadata_filter: -all
 formats: md:myst
 text_representation:
 extension: .md
 format_name: myst
 format_version: 0.13
 jupytext_version: 1.11.5
kernelspec:
 display_name: Python 3
 language: python
 name: python3

jupyter-book myst init markdownfile.md --kernel kernelname

jupyter: python3

(launch:thebe)=

https://jupyterbook.org/en/stable/file-types/myst-notebooks.html
https://thebe.readthedocs.io/en/stable/

Fig. 2 Menu to launch Live Code with Thebe

This will launch the code in your configured server (in this case MyBinder) and a new loading text will be shown at the top of
the current page with several steps, building the code, publishing and launching. Depending on the configured server this
process may take some time to complete, and occasionally could fail to launch.

failed

pushing

launching

built

ready

Fig. 3 Steps that Live Code will show as it prepares the running environment.

Once the kernel is ready, any Python code that is written in a {code-cell} with ipython3 can be modified and re-run in real
time. The current page is an example in which you can modify all the cells.

Quarto does not currently support Thebe, but it supports launching the code in a third party environment like MyBinder by
adding the following yaml configuration in the header of the Markdown file

Quarto has good integration with Shiny which has additional functionalities that can bee seen in Section Interactive content.

Simple examples
In Jupyter Books by using the code-cell directive it is possible to execute code and print out its response.

When your book is being built, the contents of any {code-cell} block will be executed with the default Jupyter kernel. The
outputs will be displayed in-line with the rest of your content.

It is possible to modify the behaviour of code-cells by adding tags . For example the tag hide-input will make the code
hidden until it is clicked with the mouse.

code-links: binder

```{code-cell}
print("Hello world!")
```

print("2 + 2 = ", 2 + 2)

2 + 2 = 4

file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/thebe_steps.svg
https://shiny.posit.co/

The following code is an example:

The previous example generates a random number between 1 and 6 and stores the result in a variable. The content of the
variable can be printed in a separate cell

The following code illustrates how to create a lineplot which can be easily modified in a Live environment.

Exploration of tables
In data analysis it is common to inspect large amounts of data which in certain cases is stored in a tabular form. Pandas is a
Python library that is able to produce Data Frames (similar to the Data Frames from the R programming language), and
can produce summaries and visualisations in various output formats. The following example shows the recorded temperatures

(Celsius) in Bristol as shown in its Wikipedia article[1].

```{code-cell} ipython3
:tags: [hide-input, thebe-init]

# Python code
```

Show code cell source

print(hidden_text)

The result of this draw of a six sided dice is 4

import matplotlib.pyplot as plt

plt.plot([0, 1, 2, 6], [0, 4, 2, 5], 'o-')

[<matplotlib.lines.Line2D at 0x7f4e853c9610>]

The cells are not independent, and following computations can be performed making reference to variables instantiated in
previous cells. The following example shows some statistics of the previous table.

Static plots

Figures generated with plotting libraries can also be rendered and shown as static images (e.g. matplotlib, pyplot, bokeh). The
following is an example with the previous temperatures rendered with `Matplotlib``.

import pandas

features = ['Record low', 'Record high']
date = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct',
 'Nov', 'Dec']
data = [[-14.4, 14.2], [-9.7, 18.3], [-8.3, 21.7], [-4.7, 25.7], [-2.0, 27.4],
 [0.6, 32.5], [4.7, 34.5], [3.9, 33.3], [0.6, 28.3], [-3.2, 26.8],
 [-6.5, 17.5], [-11.9, 15.8]]
df = pandas.DataFrame(data=data, index=date, columns=features)

df.style.background_gradient(cmap='coolwarm', vmin=df.min().min(), vmax=df.max().max())

 Record low Record high

Jan -14.400000 14.200000

Feb -9.700000 18.300000

Mar -8.300000 21.700000

Apr -4.700000 25.700000

May -2.000000 27.400000

Jun 0.600000 32.500000

Jul 4.700000 34.500000

Aug 3.900000 33.300000

Sep 0.600000 28.300000

Oct -3.200000 26.800000

Nov -6.500000 17.500000

Dec -11.900000 15.800000

df.describe()

Record low Record high

count 12.000000 12.000000

mean -4.241667 24.666667

std 6.124831 7.056568

min -14.400000 14.200000

25% -8.650000 18.100000

50% -3.950000 26.250000

75% 0.600000 29.350000

max 4.700000 34.500000

import matplotlib.pyplot as plt
plt.plot(df, '-o')
plt.ylabel('Temperature ($^{\circ}C$)')
plt.title('Min. and Max. recorded temperatures in Bristol')
plt.grid()

Or the following examples of 3D surfaces from the Matplotlib documentation.

Code listing

It is possible to print the source code of any Python function with the package inspect . The following is an example for a
function in the bpython package.

Then it is possible to get the function documentation

from bpython.examples import matplotlib_trisurf3d_2

matplotlib_trisurf3d_2()

def function_example(a: float, b: float):
 """Sums two numbers

 Parameters

 a : float
 First number to sum
 b : float
 Second number to sum
 """
 return a + b

https://matplotlib.org/stable/gallery/mplot3d/trisurf3d_2.html#sphx-glr-gallery-mplot3d-trisurf3d-2-py

[1]

or its source code

Reuse of complex code

In order to reuse complex code across the website, it is recommended to write a package with the functions. In the case of the
current roadmap, we have created a package bpython in the folder /lib/book-python/. It can be installed after the
requirements with

The -e option keeps the library in its current folder, allowing the modification of the library during the development of the
website. In this way, every time that the virtual environment is loaded the library is loaded anew. The following code should
print the current version of this auxiliary library.

Another example with a complex 3D surface visualisation from the Matplotlib documentation was already shown in Section
Static plots.

https://en.wikipedia.org/wiki/Bristol

Interactive content
Programming examples shown in the previous sections are executed during the compilation of the publication and their result
is embedded into the resulting publication file. We have also seen that with Thebe it is possible to have live code that can be
modified and re-run to generate different results. However, it requires a third party server (e.g. Google Colab, MyBinder,

import inspect

documentation = inspect.getdoc(function_example)
print(documentation)

Sums two numbers

Parameters

a : float
 First number to sum
b : float
 Second number to sum

source = inspect.getsource(function_example)
print(source)

def function_example(a: float, b: float):
 """Sums two numbers

 Parameters

 a : float
 First number to sum
 b : float
 Second number to sum
 """
 return a + b

pip install -e /lib/book-python/

import bpython

print(f"The current BPython version is {bpython.__version__}")

The current BPython version is 0.0.1.dev1

https://github.com/TAILOR-UoB/new_ways_of_publishing/tree/main/lib/book-python
https://en.wikipedia.org/wiki/Bristol

SageMaker Studio Lab, or others). On the other hand, there are methods to run code in the same web browser used for
viewing the formatted content, without the need of an external computation resource. In this section we demonstrate how this
can be achieved with Shinylive and other libraries.

Plots with Plotly

Some libraries can produce figures that can be interacted with. For example Plotly provides tools like zooming, selection,
hover information, filtering, and more. The following example shows the sepal length and width of flowers from the Iris dataset.
Notice that it is possible to remove some classes from the visualisation by clicking on the species in the legend, it is possible to
get additional information on the summary statistics or the individual samples by hovering with the mouse, it is possible to
select a rectangular subregion to zoom in, download the plot as a png , and more.

Maps with IpyLeaflet
The Python library ipyleaflet can display maps using the JavaScript library Leaflet which are interactive and mobile-friendly.

import plotly.express as px
df = px.data.iris()
fig = px.scatter(df, x="sepal_width", y="sepal_length", color="species",
 marginal_y="violin", marginal_x="box", trendline="ols",
 template="simple_white")
fig.show()

2 2.5 3 3.5 4 4.5

4

5

6

7

8

species
setosa
versicolor
virginica

sepal_width

se
pa

l_
le
ng

th

from ipyleaflet import Map, Marker, basemaps, basemap_to_tiles
m = Map(
 basemap=basemap_to_tiles(
 basemaps.NASAGIBS.ModisTerraTrueColorCR, "2017-04-08"
),
 center=(51.4545, -2.5879),
 zoom=4
)
m.add_layer(Marker(location=(51.4545, -2.5879), draggable=False))
display(m)

https://ipyleaflet.readthedocs.io/en/latest/
https://plotly.com/
https://plotly.com/

Jupyter Widgets
Jupyter Widgets provide a set of interfaces to interact with Python code. Some of the interfaces are buttons, sliders, In a Live

environment this interactions result in the code being executed.

The results of the interactions with the widgets can be used in the following code cells.

Shinylive: Shiny + WebAssembly

Shinylive is a technology that unifies Shiny and WebAssembly. WebAssebmly is a binary format for compiled programs that
can run in the web browser at near-native speeds. Pyodide is a port of Python and various packages compiled in
WebAssembly.

It is possible to edit Shiny applications in the online editor https://shinylive.io/py/editor/. Once the application has been finished
it is possible to copy a link to the end result. By default, Shiny provides an interface with a code editor on the top left, an output
console at the bottom left and a user interface on the right to output the application result. The following example uses the
output console and not the user interface.

Share

app.py +
print('Hello world!')1

2

It is possible to modify the code and obtain the result on the output console. For example, you may want to try and change
print('Hello world!') by print(2+2) and click Re-run app (or press (Ctrl)-Shift-Enter).

Shinylive in Jupyter Book

Jupyter Books (like this roadmap) need to edit the application in the online editor and embed the final application using the
resulting url and an <iframe> . For example the following iframe

import ipywidgets as widgets

a = widgets.FloatText()
b = widgets.FloatSlider()
display(a,b)

mylink = widgets.jslink((a, 'value'), (b, 'value'))

display(a)

https://ipywidgets.readthedocs.io/en/latest/
https://shiny.posit.co/py/docs/shinylive.html
https://shiny.posit.co/
https://webassembly.org/
https://pyodide.org/en/stable/
https://shinylive.io/py/editor/
https://shiny.posit.co/py/

which is rendered as follows

Share

app.py +
from shiny import App, ui

app_ui = ui.page_fluid(ui.h2("Hi, and thanks for trying Shiny!"))

app = App(app_ui, None)

1
2
3
4
5
6

All the code for the previous example is encoded in the URL as a GET method. It is possible to modify the code in the editor,
and generate the new URL by clicking the Share button on the top right corner. This provides a link to the editor (including
editor, console and user interface (ui)) or only the application (ui).

Furthermore, the original source code could be store in a Github Gist and provide the gist id in the url. For example, the
following GitHub Gist https://gist.github.com/wch/e62218aa28bf26e785fc6cb99efe8efe with
id=e62218aa28bf26e785fc6cb99efe8efe can be deployed with

which results in the following application

Share

logo.png ×app.py × +
from pathlib import Path
from shiny import ui, render, App, Inputs, Outputs, Session

app_ui = ui.page_fluid(
 ui.row(
 ui.column(
 6, ui.input_slider("n", "Make a Shiny square:", min=0, m
),
 ui.column(
 6,
 ui.output_ui("images"),
),

1
2
3
4
5
6
7
8
9

10
11
12

There are multiple prebuild common Python packages like Matplotlib, Numpy, Seaborn, Scipy, and scikit-learn (See list of
packages for Pyodide 0.25.1 at https://shiny.posit.co/py/docs/shinylive.html#installed-packages). This makes it flexible to
create plots with interactive parts like the following histogram of random points.

<iframe src="https://shinylive.io/py/editor/#code=NobwRAdghgtgpmAXGKAHVA6VBPMAaMAYwHsIAXOcpMAMwCdiYACAZwA
data-external="1" width="100%" height="400px">
</iframe>

<iframe src="https://shinylive.io/py/editor/#gist=e62218aa28bf26e785fc6cb99efe8efe"
data-external="1" width="100%" height="400px">
</iframe>

https://shiny.posit.co/py/
https://gist.github.com/wch/e62218aa28bf26e785fc6cb99efe8efe
https://shiny.posit.co/py/
https://shiny.posit.co/py/docs/shinylive.html#installed-packages

Share

app.py +
import matplotlib.pyplot as plt
import numpy as np
from shiny import App, render, ui

app_ui = ui.page_fluid(
 ui.input_slider("n", "Number of bins", 0, 100, 20),
 ui.output_plot("plot"),
)

def server(input, output, session):
 @output

1
2
3
4
5
6
7
8
9

10
11
12

Or a simple line plot which can be easily modified.

Share

app.py +
import matplotlib.pyplot as plt
from shiny import App, render, ui

app_ui = ui.page_fluid(
 ui.output_plot("plot"),
)

def server(input, output, session):
 @output
 @render.plot(alt="A line plot")
 def plot():
 return plt.plot([0, 1, 2, 6], [0, 4, 2, 7], 'o-')

1
2
3
4
5
6
7
8
9

10
11
12

Shinylive in Quarto

Shiny and Quarto are both developed by Posit (formerly RStudio). Quarto integrates very well with Shinylive being able to
embed any Shinylive application in a Markdown file by writing the source code directly in a directive of the type
{shinylive-python} . There are some options that can be adjusted in the header, and the code goes directly below. The

following example in Quarto would render as the first example of the previous subsection Shinylive in Jupyter Book.

More complex examples are demonstrated in the following sections.

```{shinylive-python}
#| standalone: true
#| components: [editor, viewer]
#| viewerHeight: 480

from shiny import App, ui

app_ui = ui.page_fluid(ui.h2("Hi, and thanks for trying Shiny!"))

app = App(app_ui, None)
```

https://shiny.posit.co/py/
https://shiny.posit.co/py/

Some itineraries through the landscape
Now that we have charted the landscape of new ways of authoring and publishing online material, and given a number of
examples of “places to visit”, we are ready to describe some “itineraries” through the landscape:
practical use cases that people who want to create or update training material might encounter.

On the one hand, somebody may want to use Quarto to develop new training material, which is covered in Create a Quarto
course from scratch. But perhaps a more common use case is that somebody already has material in a legacy format which
they want to transform into a more interactive and multi-purpose form. We give a concrete example of how to do this in
Convert a LaTeX Beamer presentation to Quarto.

There are of many other possible use cases! Please get in touch if you have ideas to add other use cases to this
roadmap.

Create a Quarto course from scratch
In this section we describe how we created an online course entirely with Quarto . The main idea was to create a website with
all the necessary content to give a brief introduction to a topic, with a set of slides created with the same content, a printable
version as a pdf, video recordings for each section, all with Python interactive examples.

Overall structure of the course
The idea is to create a self-contained course with multiple publishing options that adapt to the device capabilities. The most
comprehensive format to access the course is in its website format which includes textual narrative, tables, figures, equations,
interactive code and video recordings. The other format that includes the full narrative, but without interactive code or video, is
the printable PDF. Finally, the reveal.js slides focus on the key points but include the tables, figures, equations and the
interactive code.

In order to generate multiple types of outputs with Quarto it is necessary to configure the different formats in the _quarto.yml
file (See lines 52-84) and in the quarto markdown file of the specific section (See lines 20-38 of odm.qmd).

The following is a small extract of the configuration in YAML format.

format:
 html:
 theme:
 light: [yeti, mooctai.scss]
 dark: [superhero, mooctai_dark.scss]
 code-link: true
 css: style.css
 toc: true
 number-chapters: true
 reveal.js:
 logo: "../images/logos/tailor_and_uob.svg"
 output-file: slides-intro-to-opt-dec-mak.html
 slide-number: true
 incremental: true
 smaller: false
 auto-stretch: false
 chalkboard: true
 pdf:
 include-in-header:
 - file: packages.tex
 - operators.tex
 - colors.tex
 - definitions.tex

Note

https://tailor-uob.github.io/mooc_trustworthy_ai/cha_odm/odm.html
https://github.com/TAILOR-UoB/mooc_trustworthy_ai/blob/63044497ef9f8d2f23afa4acd939d27b4839ed2a/_quarto.yml
https://github.com/TAILOR-UoB/mooc_trustworthy_ai/blob/63044497ef9f8d2f23afa4acd939d27b4839ed2a/_quarto.yml#L52-L84
https://github.com/TAILOR-UoB/mooc_trustworthy_ai/blob/63044497ef9f8d2f23afa4acd939d27b4839ed2a/cha_odm/odm.qmd#L20-L38
https://github.com/TAILOR-UoB/mooc_trustworthy_ai/blob/63044497ef9f8d2f23afa4acd939d27b4839ed2a/cha_odm/odm.qmd

Course narrative and key points
The course follows a textual narrative explaining the details, but the slides need to concentrate on the main points, leaving out
some details. This can be achieved as follows:

In order to keep some content in the slides we decided to create lists with the key points, which can be shown in all formats.
We have added a Key Points title as a subsection in the other formats (an example can be found at https://tailor-
uob.github.io/mooc_trustworthy_ai/cha_odm/odm.html#key-points).

Figures, tables and equations

Figures, tables and equations can be visualised in all formats and are automatically adjusted to fit the available space of the
output format.

Figures can be easily added in plain markdown

which would be rendered as follows:

However, Quarto markdown also allows changes to the style of the image, for example the alignment and size

or with HTML code as follows.

Using html syntax to render images in Jupyter Book is not recomended, and requires the activation of the
html_image extension (which is not active in this roadmap).

Tables can be written in markdown

::: {.content-hidden when-format="reveal.js"}

Text shown in all formats excepts reveal.js slides.

:::

![Rounded rectangle](./images/example.png)

![Rounded rectangle](./images/example.png){fig-align="center" width="100px"}

<img src="images/example.png" alt="Rectangle with the text: example of an
image." style="width=100px">

	A	B
1	A1	B1
2	A2	B2

Warning

https://tailor-uob.github.io/mooc_trustworthy_ai/cha_odm/odm.html#key-points
https://tailor-uob.github.io/mooc_trustworthy_ai/cha_odm/odm.html#key-points

which is rendered as

Finally, equations can be written in LaTeX and are interpreted by MathJax . Equations can be written inline with $E=mc^2$
shown as , or in display mode:

which is rendered as

Programming examples
This course is designed for a technical audience that may benefit from programming examples that serve both to teach a
concept and learn how to code the example. In this use-case we generate figures based on the explained mathematical
concepts. Accessing the source code can provide further intuition to better understand the resulting figures. The next example
has been extracted from the use-case which shows the source code and the generated figure below.

A B

1 A1 B1

2 A2 B2

E = mc2

$$
\begin{equation}
 \mathbb{E}_{j \sim P(\cdot|\vec{x})} (c_{i|j}) = \sum_{j = 1}^K P(C_j|\vec{x}) c_{i|j}.
\end{equation}
$$

Ej∼P(⋅|→x)(ci|j) =
K

∑
j=1

P(Cj|→x)ci|j.

import matplotlib.pyplot as plt

C = [[0, 1], [1, 0]]
threshold = (C[0][1] - C[1][1])/(C[0][1] - C[1][1] + C[1][0] - C[0][0])
cost_t = threshold*C[0][0] + (1-threshold)*C[0][1]
plt.grid(True)
plt.plot([0, 1], [C[0][1], C[0][0]], '--', label="Predict C_1")
plt.plot([0, 1], [C[1][1], C[1][0]], '--', label="Predict C_2")
plt.plot([threshold, 1], [cost_t, C[0][0]], lw=5, color='tab:blue', label="Optimal C_1")
plt.plot([0, threshold], [C[1][1], cost_t], lw=5, color='tab:orange', label="Optimal C_2")
plt.xlabel('$P(C_1|x)$')
plt.ylabel('Expected cost')
plt.legend()
plt.annotate("Optimal threshold = 0.5", (0.5, 0.48), xytext=(0.4, 0.2),
 arrowprops=dict(arrowstyle='->', facecolor='black'))
plt.scatter(0.5, 0.5, s=100, facecolors='none', edgecolors='tab:red', zorder=10)
plt.show()

Interactive examples
An important part of the attraction of novel publishing tools is the possibility of creating interactive and dynamic applications
online. Shinylive is a method that combines Shiny and WebAssembly to run Python code in your own client web
browser. Quarto has a great integration with this technology, allowing to include code directly in the markdown that is
executed in real time when the page is loaded. The following code is an example extracted from the use case. (In this instance
we chose not to show the code in the course to focus the learner on the interactive example.)

This roadmap has been created with Jupyter Book which does not support Shinylive . However, it is possible to create
the Shinylive example in the online editor at https://shinylive.io/py/editor/ and then insert an iframe with the result as follows

```{shinylive-python}
#| standalone: true
#| components: viewer
#| viewerHeight: 480

import matplotlib.pyplot as plt
from shiny import App, render, ui
import pandas as pd

app_ui = ui.page_fluid(
    ui.layout_sidebar(
        ui.panel_sidebar(
    ui.input_slider("TP", "Cost True C1",  value=-5, min=-10, max=0),
    ui.input_slider("TN", "Cost True C2",  value=-1, min=-10, max=0),
    ui.input_slider("FN", "Cost False C2", value=10, min=1,   max=10),
    ui.input_slider("FP", "Cost False C1", value=1,  min=1,   max=10),
    ),
    ui.panel_main(
    ui.output_plot("plot")
    )
    ),
)

def server(input, output, session):
    @output
    @render.plot(alt="A histogram")
    def plot():
        TP = input.TP() # C_1|1
        FN = input.FN() # C_1|2
        FP = input.FP() # C_2|1
        TN = input.TN() # C_2|2
        fig = plt.figure()
        ax = fig.add_subplot()
        ax.grid(True)
        ax.plot([0, 1], [FP, TP], '--', label="Predict $C_1$")
        ax.plot([0, 1], [TN, FN], '--', label="Predict $C_2$")

        threshold = (FP - TN)/(FP - TN + FN - TP)
        cost_t = threshold*TP + (1-threshold)*FP
        ax.plot([threshold, 1], [cost_t, TP], lw=5, color='tab:blue', label="Optimal $C_1$")
        ax.plot([0, threshold], [TN, cost_t], lw=5, color='tab:orange', label="Optimal $C_2$")

        C = [[TP, FP], [FN, TN]]
        bbox = dict(boxstyle="round", fc="white")
        ax.annotate(r'$C_{2|2}$', (0, C[1][1]), xytext=(2, -1),
                    textcoords='offset fontsize',
                    arrowprops=dict(arrowstyle='->', facecolor='black'),
                    bbox=bbox)
        ax.annotate(r'$C_{1|1}$', (1, C[0][0]), xytext=(2, 0),
                    textcoords='offset fontsize',
                    arrowprops=dict(arrowstyle='->', facecolor='black'),
                    bbox=bbox)
        ax.annotate(r'$C_{1|2}$', (0, C[0][1]), xytext=(0, 2),
                    textcoords='offset fontsize',
                    arrowprops=dict(arrowstyle='->', facecolor='black'),
                    bbox=bbox)
        ax.annotate(r'$C_{2|1}$', (1, C[1][0]), xytext=(2, 0),
                    textcoords='offset fontsize',
                    arrowprops=dict(arrowstyle='->', facecolor='black'),
                    bbox=bbox)

        ax.annotate(f'$t*={threshold:0.2}$', (threshold, cost_t), 
                    xytext=(0, --3),
                    textcoords='offset fontsize',
                    arrowprops=dict(arrowstyle='->', facecolor='black'),
                    bbox=bbox)

        ax.set_xlabel('$P(C_1|x)$')
        ax.set_ylabel('Expected cost')
        ax.legend()

        return fig

app = App(app_ui, server, debug=True)

https://shinylive.io/py/editor/


which is rendered as follows

Edit

Video recordings
The video recordings required the accompanying set of slides generated from the same course. Given that the slides contain a
reduced version of the website, it is possible to create the slides and the videos before the narrative is finalised, which has
been the approach taken for this course. The video were recorded in a home environment with non-professional devices such
as a common laptop and its internal microphone. In order to record both the slides and the speaker we used OBS (Open
Bradcaster Software) Studio which is a free and open-source software for video recording (and live streaming) available for
Windows, Mac and Linux.

The background of the speaker was removed using an OBS Studio plugin that does not require a green screen . However, the
parameters need to be adjusted which can affect the computation cost and the precision of the background removal. For
online courses it is recommended to create short videos of a very specific topic (less than 10 minutes) to facilitate the time
management of the students, and to potentially reuse some video recordings in similar courses. A total of four videos were
recorded with an average length of approximately 9 minutes. The videos are currently hosted on YouTube and can be used
without the other content.

<iframe src="https://shinylive.io/py/app/#code=NobwRAdghgtgpmAXGKAHVA6VBPMAaMAYwHsIAXOcpMASxlWICcyACGKM1A
data-external="1" width="100%" height="400px">
</iframe>

https://shiny.posit.co/py/
https://obsproject.com/
https://obsproject.com/
https://www.youtube.com/watch?v=IymQ6f87CtA&amp;list=PLgdhPOmeUNm0tiFGUQtAG1yWx8bz914SI


Fig. 4 OBS Studio configured to record the set of slides and video capture with a plugin that automatically removes the
background.

In order to install the background removal plugin in Ubuntu 20.04 it is necessary to install OBS and the plugin from flatpak
with the following commands:

The following video is an example of the results obtained using the reveal.js  slides generated with Quarto  and the video
recorded with OBS  and the automatic removal of the background.

Introduction to Optimal Decision Making: MotivationIntroduction to Optimal Decision Making: Motivation

Convert a LaTeX Beamer presentation to Quarto
In this use case we start from an already existing set of slides made with LaTeX package Beamer. The course generated in
this use case is available at https://tailor-uob.github.io/mooc_trustworthy_ai/cha_wahcc/wahcc.html.

This use case explains the process followed to generate the Quarto  course material. In order to replicate the steps involved
you can  download the presentation source files from this link .

To generate the slides first unzip the downloaded file and run pdflatex  and biber  as follows

flatpak remote-add --if-not-exists flathub https://flathub.org/repo/flathub.flatpakrepo
flatpak install flathub com.obsproject.Studio
flatpak install flathub com.obsproject.Studio.Plugin.BackgroundRemoval

https://www.youtube.com/watch?v=IymQ6f87CtA
https://ctan.org/pkg/beamer?lang=en
https://tailor-uob.github.io/mooc_trustworthy_ai/cha_wahcc/wahcc.html
file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_downloads/607ee4c14e80879975f26e734f105c67/cla-cal-slides.zip


The rest of this section uses the content of the zip file to extend the Quarto  project started in the use case Create a Quarto
course from scratch.

Pandoc: from LaTeX to markdown
Depending on the size of the LaTeX project it may be possible to manually copy the main content and edit it in such a form that
is markdown compliant. This may be a good solution as at the end there is no perfect automation to convert LaTeX to
markdown. However, there are a few alternatives that will do part of the job automatically. In particular, pandoc  is a tool to
convert text documents into a multitude of other formats (see Pandoc).
The command to convert a LaTeX file to markdown  is the following.

However, this will result in a markdown with only the titles of the sections and empty content. This is because the LaTeX
source code of this example contains several definitions and new commands that can not be converted by pandoc  without
manual modifications.

The first thing that needed to be changed was to define the command brightFrame  which was previously defined in a
separate file that contained lots of other definitions and commands. Remove the line 44 that loads the external file
frame-commands.tex .

And define the new command brigthFrame  in the main.tex  file

Only with this change the resulting markdown  file will contain most of the original information including tables, some figures,
equations, and references. The resulting markdown file needs to be renamed to include the Quarto  extension .qmd , and it
can be copied to a Quarto  project together with the figures folder, bibliography and other documents. The next image shows
the header of the resulting markdown content rendered into html.

unzip -X cla_cal_slides.zip
pdflatex main.tex
biber main
pdflatex main.tex

pandoc main.tex -s -o main.md

44: \input{latex/frame-commands}

\newcommand{\brightFrame}[2]{
  \begin{frame}
    \frametitle{#1}
    #2
  \end{frame}
}



Fig. 5 Begining of the markdown document converted by Pandoc and rendered by Quarto.

Some of the figures that are originally in the pdf format are rendered inside of a pdf reader interface. This will need to be fixed
manually by converting the pdfs into images.

Fig. 6 PDF figures in the markdown file rendered by Quarto.

Equations in LaTeX are kept in their original form in the generated markdown files as pandoc will convert the equations to
MathJax which is a JavaScript display engine for mathematics.

Fig. 7 Equations generated by Quarto  from the markdown file.

Another problem is that the original LaTeX file did not indicate the extension of some figures that were originally PDFs. With
the absence of the file extension Quarto  assumes that the figures are png  files and adds that extension which is not correct.
An option would be to manually modify all the figures in the Quarto  markdown file clearly specifying the extension. However,
in this case it is better to convert all the pdf  figures to png , as those will be rendered better in the website.

Before converting the pdf  files to png  it will be necessary to crop all the pdf  files as some of them have invisible parts that
will show incorrectly in the png  version. Running the following shell script will crop all the pdf files in the current folder.

file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/pandoc_1.jpg
file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/pandoc_2.jpg
https://www.mathjax.org/
file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/pandoc_4.jpg


Then we can proceed to convert all the pdf  files. Here is a shell script to convert a set of pdf  files to png

Only with this change all the figures that did not specify the extension will be loaded. It is also convenient to change the
remaining extensions .pdf  to .png  now that we have the bitmap version of all figures.

Figure sizes and positions
Figures in the original set of slides were positioned and adjusted to fit the spacing provided by LaTeX Beamer. The change of
spacing in the Quarto  output makes it difficult to fit the figures in an appealing manner. For that reason, we had to manually
adjust the automated generated markdown code. The original LaTeX code

which considered the height of the slides to position them correctly as follows

#!/bin/sh

# it depends on texlive-extra-utils
# Install:
# sudo apt-get install texlive-extra-utils

for f in ./*.pdf
do
    echo "Cropping file $f"
    pdfcrop "${f}" "${f}"
done

#!/bin/sh

# depends on gs
# sudo apt-get install gs

for in_file in "$@"
do
    out_file="${in_file%.pdf}.png"
    echo "Converting file ${in_file} to ${out_file}"
    gs -sDEVICE=pngalpha -o ${out_file} -sDEVICE=pngalpha -r1200 ${in_file}
done

\includegraphics[height=0.7\textheight]{figures/ROCCH.pdf}\hfill
\includegraphics[height=0.7\textheight]{figures/ROCcal2.pdf}\\
Source: \textcite{flach2016roc}



The code was automatically converted to markdown keeping the original height proportions

However, the spacing in the Quarto  webpage didn’t have the same vertical dimensions, which made the figures extend to a
large portion of the webpage. We manually changed the code by partitioning the body space into columns as follows

which resulted in the following output

Comments and line breaks
It turned out that some of the comments in LaTeX (lines that start with the % symbol) were not ignored during the conversion
to markdown. The fourth line of the following example should be removed from the generated markdown file.

However it resulted in the following text, which kept the % symbol and joined the \end{align*}  into the previous line.

![image](figures/ROCCH.pdf){height="0.7\textheight"}
![image](figures/ROCcal2.pdf){height="0.7\textheight"}\
Source: @flach2016roc

:::: {.columns .v-center-container}

::: {.column width="40%"}

![image](figures/ROCCH.png)

:::
::: {.column width="10%"}
:::
::: {.column width="47%"}
![image](figures/ROCcal2.png)

Source: @flach2016roc

:::
::::

confidence $c$, is equal to $c$:  
\begin{align*} 
P(Y=i \: | \: \ph_i(\vx)=c)=c\qquad\text{where }\ i=\argmax_j \ph_j(\vx).
%P\Big(Y=\argmax\big(\vph(X)\big) \: \Big| \: \max\big(\vph(X)\big)=c\Big)=c.
\end{align*}
}



Errors like this need to be manually edited which depending on the number of occurrences can be time-consuming.

Generating figures from source code
The original slides required the figures to be generated in advance and imported from LaTeX. However, given that we had the
Python  code to generate the figures it is better to embed the code, which can be modified in the markdown  file if we want to

change the example. For example, the following markdown code loaded a figure

which was originally generated with the following Python code. By adding the code to the markdown  it is possible to generate
the same figure during compilation both in the Quarto  example, and in this same Jupyter Book roadmap.

Authors in the header
Quarto  allows the inclusion of metadata in the YAML header section of each markdown file, which can be used to display

authors at the top of each page. This makes it very easy to collaborate in one Quarto  publication where multiple authors
worked in different sections, and clearly indicate their contributions. The following metadata

confidence $c$, is equal to $c$: $$\begin{aligned}
P(Y=i \: | \: \hat{p}_i(\mathbf{x})=c)=c\qquad\text{where }\ i=\argmax_j \hat{p}_j(\mathbf{x}).
%P\Big(Y=\argmax\big(\vph(X)\big) \: \Big| \: \max\big(\vph(X)\big)=c\Big)=c.\end{aligned}$$

confidence $c$, is equal to $c$: $$\begin{aligned}
P(Y=i \: | \: \hat{p}_i(\mathbf{x})=c)=c\qquad\text{where }\ i=\argmax_j \hat{p}_j(\mathbf{x}).
\end{aligned}$$

![image](figures/Forecaster1-fixed-gaps-v2){width="90%"}

#| code-fold: true
#| code-summary: "Show the code"

import numpy as np
import matplotlib.pyplot as plt

from pycalib.visualisations import plot_reliability_diagram

labels = np.array([0, 0, 0, 1, 0, 1, 1, 1])
scores = np.array([0.1, 0.1 ,0.4, 0.4,0.7, 0.7, 0.7, 0.9])
bins = [0, 0.25, 0.5, 0.85, 1.0]
fig = plt.figure(figsize=(5, 4))
fig = plot_reliability_diagram(labels, np.vstack([1 - scores, scores]).T,
                               class_names=['not 1', 'rain'], bins=bins,
                               fig=fig, show_gaps=True,
                               show_bars=True)



results in a list of authors with their affiliations, links to their e-mail addresses and ORCID profiles.

Generating Reveal.js slides
Quarto  allows the generation of multiple types of outupt formats from the same markdown  file. By adding the following

configuration to the header, Quarto  will generate reveal.js  slides and provide a link to view the content in this format in the
right-hand navigation bar.

title: Classifier Calibration
author: 
  - name: Peter Flach
    orcid: 0000-0001-6857-5810
    email: peter.flach@bristol.ac.uk
    affiliations:
      - name: University of Bristol
        city: Bristol
        country: United Kingdom
        postal-code: BS8 1QU
  - name:
      given: Miquel
      family: Perello Nieto
    orcid: 0000-0001-8925-424X
    email: miquel.perellonieto@bristol.ac.uk
    affiliations:
      - name: University of Bristol
        city: Bristol
        country: United Kingdom
        postal-code: BS8 1QU
    attributes:
        equal-contributor: False

# Other configuration ommited
# ...

format:
  html:
    css: wahcc_style.css
  revealjs:
    logo: "../images/logos/tailor_and_uob.svg"
    output-file: slides-cla-cal.html
    slide-number: true
    width: 100%
    height: 100%
    incremental: true
    smaller: false
    auto-stretch: false
    chalkboard: true
bibliography: references.bib



Fig. 8 Some of the slides created by Quarto in the Reveal.js engine.

Questions and answers
There are various ways in which questions and answers can be incorporated in the resulting website. In this particular case we
opted to use notes with hidden text that can be inspected when clicking.

It is possible to work on multiple answers by stacking blocks of text together.

Is only one of the following answers correct?

Video recordings
Peter recorded a video using the facilities of TAILOR partner Universitat Politècnica de València. The recording session took
place in front of a green screen, with accompanying slides being placed in the background after recording. Some of the
functionalities provided are the automatic detection of slide changes that presents the different slides in the video timeline for
easy navigation, and the automatic generation of captions in various languages. For this use case Peter recorded a short
video for each subsection of the presentation.

Videos can be embedded into websites with the <iframe>  tag, which allows to embed one web page into another. The
following HTML code is an example.

Q: What is going to happen when you click this question?

Answer: Yes

Answer: No

<iframe allowfullscreen
src="https://media.upv.es/player/embed.html?id=003597b0-bf29-11ed-83a4-bf04f88f22c5"
style="border:0px #FFFFFF none;" name="Paella Player" scrolling="no"
frameborder="0" marginheight="0px" marginwidth="0px" width="640" height="360">
</iframe>

Question 1

file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/clacal_revealjs.jpg


This shows the first video of the currently explained use-case.

It is a good idea to make short videos (between 5 and 10 minutes) covering a single topic or idea. This provide flexibility to the
students to watch the videos during multiple sessions, and allows the reuse of content among different courses if the concepts
are concise and general.

Breaking into slides and sections

The original set of slides had a specific structure that may not be good for a website. Furthermore, the reveal.js  slides
generated from the resulting markdown will not preserve the exact same divisions, which need to be manually specified in the
markdown file. In this use-case some of the slide titles have been converted into sections or subsections manually. A new slide
is automatically generated for each header of level 1 ( # ), including only the title, and headers of level 2 ( ## ) create a new
slide with that title and the following content. If a slide has too much information this can be split into other slides with an
horizontal rule.

Conditional content
In certain situations we may want to show different content for different output formats. For example, in the current use case
the videos are only shown in the HTML website, but not in other static documents or the revealjs website. Using the
.content-visible  and .content-hidden  directives it is possible to specify parts of the markdown that are rendered only in

the specified formats. The following are two self-explanatory examples.

Other changes

The markdown file required additional modifications to make the website and the reveal.js  slides look good. Among the
those changes are:

Remove empty lines between each element of a list

Manually added highlights  with `text to highlight`

---

::: {.content-visible when-format="html" unless-format="revealjs"}
This content will be visible in html websites, but not in html revealjs.
:::

::: {.content-hidden when-format="doc"}
This content will not be shown in word documents.
:::



Fix multiple issues with LaTeX and added definitions and packages in the header

Adjusted the size of tables, figures and code to better fit the webpage and the slides

MyST client: LaTeX to HTML
We end this use-case with a short discussion of a way to convert LaTeX Beamer content directly to HTML using the MyST
client Python package. However, we didn’t find a method to obtain the intermediate MyST markdown files that are
automatically generated, which may have made the process described above with pandoc much easier. A guide on how to do
this conversion can be found at https://mystmd.org/guide/writing-in-latex. This section also provides a quick summary of the
guide that results in a good HTML version.

This method requires the installation of the MyST client, which also requires an updated version of node . The installation of
the required version of node  can be done by creating a virtual environment for the specific version.

You can list the available node  version for virtual environments with

At the time of writing the required version was 20.11.1  which can be loaded by creating the virtual environment with the
specific version and loading it.

One consideration from this example is that the LaTeX environment refsection  is not currently supported, and all the
environments need to be removed. This can be done by removing the beginning and end of each environment.

The resulting website is in general very well formatted with some minor problems. The following is a capture of the resulting
front page with a navigation bar on the left for the different documents and on the right side for the sections of the current
document.

pip install nodeenv

nodeenv --list

nodeenv -n 20.11.1 node_env
source node_env/bin/activate
node -v
# v20.11.1
npm -v
# 10.2.4

\begin{refsection}
...
\end{refsection}

https://mystmd.org/guide/writing-in-latex
https://mystmd.org/guide/installing


Fig. 9 Automatic conversion of LaTeX Beamer file into a website with MyST client.

The previous figure shows one of the issues with the lists, which in this particular case were not converted to markdown
correctly. However, tables, images and equations were correctly rendered in most cases. The table shown in Fig. 10 looks
correct, but is missing the definition of colors specified in a separate LaTeX file.

Fig. 10 Simple LaTeX table converted with MyST client to markdown. The defined colors in LaTeX are not rendered
correctly.

Images in different formats (even without clearly indicated extension) are correctly converted into bitmaps and placed in the
right clocation as shown in Fig. 11.

file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/myst_1.jpg
file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/myst_2.jpg
file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/myst_3.jpg


Fig. 11 Bitmap and pdf images are correctly converted into bitmaps and placed in the right location.

While equations are correctly formated even with special definitions of new commands and colors as shown in Fig. 12.

Fig. 12 Most of the equations are correctly displayed, even with colors.

Concluding remarks
Technology has moved far beyond the printing press, yet academic publishing is to a large extent still informed by the legacy
format of printable documents. The growth of the World Wide Web is enabling the modernisation of teaching material which
can be accessed from a large variety of devices. It also provides a platform for dynamic and interactive material that is
automatically adjusted to the publishing medium. This roadmap has been written to help AI researchers embrace these new
ways of publishing and the new modes of learning that they facilitate.

It should also be said that the rapid growth of web technologies creates a transitional environment for software and publishing
tools that are still being developed and do not address all the requirements of such systems. Publishing systems like Jupyter
Book  and Quarto  are among the most curated ones but are under heavy development. In a year from now they will have
many new features that will push the boundaries even further. The challenge is for all of us to keep abreast of these
developments and to make sure that we use the best tools for our purposes, while keeping in mind that this should not just be
driven by the technological push but strike a balance with well-understood educational needs.

One area where current technology does not quite meet users’ needs is in collaborative authoring. Markdown-based formatting
tools such as Quarto  offer maximum freedom how the authoring artefacts are produced, which some will see as an
advantage but also means that a collaborative environment for authoring markdown files (e.g., HackMD) is separate from
Quarto  formatting. This situation is similar to LaTeX authoring prior to 2011 when Overleaf and ShareLaTeX were developed.

Interestingly, the collaborative features in Overleaf such as commenting and tracked changes followed the model set by
WYSIWYG editors such as Microsoft Word and Google Docs. A good collaborative environment combined with the flexibility of
the Single-In-Multiple-Out paradigm would pave the way to the Multiple-In-Multiple-Out (MIMO) publishing paradigm that was
already envisaged in the TAILOR deliverable D9.3 [SF21]. Such a system would pull together different authoring artefacts,
possibly from different locations, and composes them in all the required output formats.

file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/myst_5.jpg
https://hackmd.io/


Text

Composition

Figures

Code

...

Published

Paper

(PDF)

Presentation

Slides

(PPTX/PDF)

Poster

(PPTX/PDF)

Computational

Notebook

(Colab)

Appendix A: Open Courses
The idea of Open Courses is to take some of the principles of Open Research and adapt for the creation of online training
material. Open Research is a set of principles to promote sharing research outcomes in a way that makes research
reproducible and more transparent. There are at least four aspects that are considered:

Open Code (Open source licenses)

FAIR Data (Findable Accessible Interoperable Reusable)

Research Profile (e.g. ORCID)

Open Access of publications (Green, Gold, Hybrid, Diamond)

New ways of publishing potentially needs to consider all of the aforementioned points as the objective is to publish training
material online with maximum reach. For transparency and accessibility the source code of the course should be open and
any data used in the course should adhere to best practices. The authors of the course may also benefit from an open
research profile which would give credibility to their content, transparency and increase the visibility to other work created by
the same authors.

Open Code
As indicated for the datasets, publishing the code of the training material online does not entitle the way in which the course
material can be used. When the course is created it is automatically protected by copyright. The course source code material
without a license can not be used. It is important then to understand what are the licenses available and to add them to the
course material properly. The information provided in this roadmap is a personal overview and should not be taken as legal
advise, additional information can be found at https://opensource.guide/legal/. Furthermore, an interactive guide on how to
choose a license is available at https://choosealicense.com/.

One of the most common licenses for open-source is Creative Commons . It has lots of variations depending on the flexibility
that you want to provide to the users. The Creative Common licenses are short named with acronyms, and understanding
them makes much easier their interpretation.

0 (No rights Reserved, Public Domain): There are no restrictions on how the code is used nor shared.

BY (By Attribution): Any use of the code needs to attribute the original work and author/s.

SA (Share-Alike): Any use of the code even if modified needs to keep the same license as the original work.

https://opensource.guide/legal/
https://choosealicense.com/


ND (No Derivatives): The work is shared as a whole and can not be modified.

NC (Non Commercial): The work can not be used for commercial uses.

The following are some common Creative Commons licenses:

CC-0: No Rights Reserved, allows the distribution without accreditation, it is commonly used to share tabular data or other
databases from which knowledge could be derived.

CC-BY: Attribution, allows the use of the work even for commercial purposes but requires the attribution of the original
form (e.g. with a citation). It is recommended for the widest dissemination of work.

CC-BY-SA: Attribution-ShareAlike, allows the use of the work even for commercial purposes but requires the attribution
and the same type of license to any derivatives.

CC-BY-ND: Attribution-NoDerivatives, allows the use of the code as it is even for commercial uses, but does not allow the
modification of the code. It also requires the accreditation of the original author.

CC-BY-NC: Attribution-NonCommercial), allows the use and modification of the code for non-commercial use, subject to
accreditation of the author and does not require the same license on its derivatives.

CC-BY-NC-SA: Attribution-NonComercial-ShareAlike, allows the use and modification of the work for non commercial
applications, requires accreditation of the original work and authors and the derived code needs to use the same license
as the original.

CC-BY-NC-ND: Attribution-NonComercial-NoDerivatives, allows the use of the code without modifications for non
commercial uses and requires accreditation of the original work and authors.

The Restrictive License Template: is a license developed by the Australian Government Open Access Licensing
framework for material that contains personal or other confidential information. It can include multiple restrictions on its
use like time limits, permissions or ethics required, or contractual arrangements). See more at
https://library.unimelb.edu.au/Digital-Scholarship/restrictive-licence-template

Other common licenses for software are

MIT (license) allows the use of the Software free of charge, with no restrictions but under the condition that there is an
accreditation of the original software and authors and that the permission notice is included in all the copies or substantial
portions of the Software.

Apache (Apache License, Version 2.0) (license)

GPL (General Public License) guarantees the end users the four freedoms to run, study, share and modify the Software.

And the BSD license which includes several versions

BSD 0-clause (aka BSD Zero Clause License) allows the use, copy, modification and/or distribution of the Software for
any purposes with or without fees.

BSD 2-clause license (aka “Simplified BSD License” or “FreeBSD License”) same as 0-clause but requires to retain the
copyright notice, the list of conditions and a disclaimer in the source code and in the documentation or other materials
provided if used in its binary form.

BSD 3-clause (aka “BSD License 2.0”, “Revised BSD License”, “New BSD License”, or “Modified BSD License”) same as
2-clause license but does not allow the endorsement or promotion of products in the name of the original copyright
holders and contributors without specific prior written permission.

BSD 4-clause (aka original “BSD License”) same as 3-clause license but all advertising material that mentiones the use
of the original sofware must display the following acknowledgement: This product includes software developed by the
<copyright holder>.

FAIR Data
The FAIR (Findable Accessible Interoperable Reusable) principles of sharing data were defined by a consortium of scientists
and organisations, and published in the journal Scientific Data [WDA+16]. In STEM fields it is very common to share datasets
with the students in order to better understand the training material. It is important to ensure that any data shared online in this
manner is correctly licensed. The four principles that shape the acronym are:

https://library.unimelb.edu.au/Digital-Scholarship/restrictive-licence-template
https://opensource.org/license/mit
https://www.apache.org/licenses/LICENSE-2.0


Findable: Additional metadata is added in order to easily identify and find the data with a search engine. The metadata
needs to contain clear information and the data requires a unique identifier.

Accessible: There is a specific protocol that can be followed to retrieve the metadata of the data of interest (even if the
data is not available). The metadata is also understandable by humans and can be processed by machines. The data is
stored in a trusted repository that ensures its accessibility for a particular period of time.

Interoperable: The metadata follows a formal structure that is commonly accepted by multiple parties. Ideally the
metadata has a vocabulary that follows the FAIR principles and can form a knowledge representation.

Reusable: It is clearly specified how the data can be reused by others, including a license and any usage limitations.

Data format and storage

Data should be stored in such a way that is easy to understand by humans, machine readable and accessible; including
metadata human and computer readible. The data should be stored in open file formats facilitating the accessibility, and not
requiring propertary applications to be opened. Should provide good documentation (e.g. a README plain text file), and be
stored in a trusted dat repository for long term storage.

Some examples of data repositories are:

figshare allows to upload any file format and assigns a DOI identifier for citations.

Mendeley Data allows the storage of public or private data, keeps versioning and ensures long-term storage by Data

Archiving & Networked Services[2].

Zenodo is a general-purpose open-access repository that facilitates making the repository private and can automatically
make it open once an associated paper is published. No restrictions on the file type and datasets up to 50 GB.

The Open Science Framework[3] is an open-source research management and collaboration tool to facilitate the
documentation of a full project lifecycle.

Data Licenses
Publishing a dataset online does not entitle the ways in which the data can be used. When the data is generated it is
automatically protected by copyright and without a license, users do not have permission to access, use and share under
copyright and database laws. For example, in 2015, ~54% of the open data in open data catalogues across the European

Union was not truly open as it was not licensed[1].

There are multiple licenses to choose from, and as legal documents they may differ in some small details. In order to facilitate
the understanding of the licenses and maximise the use of your material it is advisable to use well known licenses.

Some of the most common licenses are the Creative Commons. Similar principles shown previously in the open-source
licenses section apply here. For example the Open Data Commons by Attribution License (ODC-BY v4.0) allows to copy,
distribute and use a database, produce new works derived from it, modify, transform and build upon it subject to attribution to
the original work. A similar license that forces any derived work to be shared under the same license is the Creative
Commons by Attribution share-alike (CC-BY-SA v4.0). On the other hand, a less restrictive license for public domain is the
CC0 which does not require attribution.

The licenses can also be created to fit particular purposes, or to facilitate its adoption in certain organisations. This is the case
for some governments may create their own open data licenses to facilitate its adoption among governmental organisations.

Some examples of governmental licenses are the UK Open Government License[4], the French Government open License[5]

and the Singapore Open Data Licence[6].

The European Union offers an online data licensing assistant[7]

The following video provides some quick guidelines on Data Sharing by the UK Reproducibility Network. The animation is
shared under a CC BY license. Other UKRN primers are available at https://www,ukrn.org/primers.

https://figshare.com/
https://data.mendeley.com/
https://zenodo.org/
https://osf.io/dashboard
https://www/
http://ukrn.org/primers


Data Sharing - a UKRN animated primerData Sharing - a UKRN animated primer

Research Profile
The authoring of any material should clearly and uniquely identify the identity of the contributors. In printing material it was
common to use the name and surnames of the authors as an identification. However, in multiple occasions this is not enough
for disambiguation. With more recent online tools it is possible to disambiguate authors by providing additional information and

creating unique identifiers for each of them. Webpages like ORCID[8] (Open Researcher and Contributor ID) provide unique

identifiers for researchers and connect them with their contributions. Other identifiers are the Scopus Author Profile[9] by

Elsevier, ResearcherID[10] from Clarivate, the Digital Author Identifier (DAI)[11] by the Dutch research system, among others.

Open Access
We provide a short introduction to Open Access for completeness of the Open Research principles, which is mainly directed
for research publications. However, we believe this principle may be considered if the training material is reused for a research
publication. Open Access is a broad international movement that specifies a set of principles to make research free of access
and online, defined as “digital, online, free of charge, and free of most copyright and licensing restrictions.”. One of the main
objectives is to publish research work under the CC-BY license. If the material for a course is later reused to publish a book or
some other type of publication it may be necessary to know what are the possible licensing restrictions.

Fig. 13 Open Access logo

There are multiple types of Open Access models that are used by journals. However, the most common ones are gold, green
and hybrid OA journals, while some journals are hybrid. In all the cases the article is free to read but they have the following
differences.

Gold OA: The article is free to read, but the authors need to pay the publisher, requiring an external funding. The ‘Article
Processing Charge’ costs an average of £2,000 and can reach £10,000.

Green OA: The author accepted manuscript can be hosted in some repository (e.g. Pure is a repository of scholarly works for
the Universtiy of Bristol). The publisher retains the final version in their website. The article has a CC-BY license and there is
no embargo on its use. Additional considerations may be required by the authors, for example the inclusion of a statement in
the publishers submission, like in the case of the University of Bristol recomendation:

  "For the purpose of open access, the author(s) has applied a Creative Commons
  Attribution (CC BY) licence to any Author Accepted Manuscript version arising
  from this submission."

https://www.youtube.com/watch?v=wjWAUrvA6c4
file:///home/mp15688/git/new_ways_of_publishing/booksource/_build/html/_images/open-access-logo-png-transparent.png


[2]

[3]

[1]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Diamond OA: These are crowd-funded by libraries and scholarly organisations that pay for the processing charges. Then in
the same manner as the Green OA, the accepted manuscript can be hosted in a repository, while the final copy is available in
the publisher’s website.

More about Open Research
Additional sources of information about open research can be found in the following links:

Open Research at Bristol (UOB)

Open Access for journal articles (UOB)

Research Data Evaluation Guide (UOB)

Managing research data (UOB)

Dealing with sensitive data (UOB)

https://www.nwo.nl/en/data-archiving-and-networked-services-dans

https://osf.io/dashboard

https://data.europa.eu/elearning/en/module4/#/id/co-01

https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

https://etalab.gouv.fr/licence-ouverte-open-licence

https://beta.data.gov.sg/open-data-license

https://data.europa.eu/en/training/licensing-assistant

https://info.orcid.org/

https://www.elsevier.com/en-gb/products/scopus/author-profiles

https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/researcher-
profiles/

https://en.wikipedia.org/wiki/Digital_Author_Identifier

Appendix B: Development environment
In order to build this website first you need to clone  or fork  the source repository. You can find a link to the repository by
clicking on the GitHub logo at the top of this page and Repository  in the pop-up menu (or click on the following link
 TAILOR-UoB/new_ways_of_publishing).

You can then fork  or clone  the respository and follow the instructions provided by GitHub.

Once you have a local version of the repository you need to create a virtual environment with all the dependencies. The
following instructions have been designed for an Ubuntu 20.04 machine, but will probably work in most operating systems.

Create a virtual environmnet with Python3.9  at the root of the repository by opening a terminal at the root of the repository
and running the following command

then activate the virtual environment

We have created a Makefile  that can help in all the following steps. We provide below instructions with and without the
Makefile  in different tabs.

python3.9 -m venv venv

source /venv/bin/activate

https://openresearchbristol.blogs.bristol.ac.uk/
https://www.bristol.ac.uk/staff/researchers/open-access/open-access-for-journal-articles/
https://www.bristol.ac.uk/media-library/sites/library/documents/research-support/research-data/guidance/sharing/Research%20Data%20Evaluation%20Guide.pdf
https://www.bristol.ac.uk/staff/researchers/data/
https://www.bristol.ac.uk/staff/researchers/data/dealing-with-sensitive-data/
https://www.nwo.nl/en/data-archiving-and-networked-services-dans
https://osf.io/dashboard
https://data.europa.eu/elearning/en/module4/#/id/co-01
https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
https://etalab.gouv.fr/licence-ouverte-open-licence
https://beta.data.gov.sg/open-data-license
https://data.europa.eu/en/training/licensing-assistant
https://info.orcid.org/
https://www.elsevier.com/en-gb/products/scopus/author-profiles
https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/researcher-profiles/
https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/researcher-profiles/
https://en.wikipedia.org/wiki/Digital_Author_Identifier
https://github.com/TAILOR-UoB/new_ways_of_publishing


First, upgrade pip and install all the required dependencies. One of the dependencies is a local Python library
lib/book-python  that facilitates parts of the roadmap.

Then, the book can be built with

The previous build will compile only the source files that have changed. However, the table of contents in pages that have not
changed won’t be updated. To fully build the book from anew it is necessary to clean the previous files.

The local version of the website is stored in booksource/_build/html/ . The html files can be explored with a web browser.
However, some of the functionalities will not work without a proper web server. For example, Python has its own light version
of a web service that can be started locally with the following command

If successful you should be able to access the website locally at http://localhost:9000.

The PDF  version of the website needs to be rendered a part from the website, and it will overwrite the HTML  website with a
one page version of it. The resulting PDF  is then moved into the booksource/assets/documents/  folder.

In order to get the website back you will need to run again the build  process.

In this roadmap we did not use any Jupyter Notebook. However, in case of wanting to edit one you will need to create a kernel
of the current virtual environment and load it from the Notebook.

Then, you can open Jupyter Notebook  and edit any notebooks inside the folder booksource  with the following command

pip install --upgrade pip
pip install -r requirements.txt
pip install -e lib/book-python/

jupyter-book build booksource

jupyter-book clean booksource
jupyter-book build booksource

python -m http.server 9000 -d booksource/_build/html/

jupyter-book build booksource/ --builder pdfhtml
cp booksource/_build/pdf/book.pdf booksource/assets/documents/nwop_book.pdf

pip install ipykernel
python -m ipykernel install --user --name data-science

jupyter notebook ./booksource/

Shell Makefile

Shell Makefile

Shell Makefile

Shell Makefile

Shell Makefile

Shell Makefile

http://localhost:9000/


[KW17]

[SF21]

[WDA+16]

[ZLLS23]

References
Albert Krewinkel and Robert Winkler. Formatting open science: agilely creating multiple document formats for
academic manuscripts with pandoc scholar. PeerJ Computer Science, May 2017. URL: https://doi.org/10.7717/peerj-
cs.112, doi:10.7717/peerj-cs.112.
Kacper Sokol and Peter Flach. Training platform – beta report. Technical Report, Foundations of Trustworthy AI –
Integrating Reasoning, Learning and Optimization (TAILOR), 2021. URL: https://tailor-network.eu/wp-
content/uploads/2021/11/Extended-Deliverable-9.3-Report-v1.1.pdf.

Mark D Wilkinson, Michel Dumontier, I Jsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak,
Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, Jildau Bouwman, Anthony J
Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T Evelo, Richard Finkers,
Alejandra Gonzalez-Beltran, Alasdair J G Gray, Paul Groth, Carole Goble, Jeffrey S Grethe, Jaap Heringa, Peter A C
't Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J Lusher, Maryann E Martone, Albert Mons, Abel L
Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik
Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris A Swertz, Mark Thompson, Johan van der Lei, Erik
van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and Barend
Mons. The FAIR guiding principles for scientific data management and stewardship. Sci Data, 3:160018, March 2016.

Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into Deep Learning. Cambridge University
Press, 2023. https://D2L.ai.

https://doi.org/10.7717/peerj-cs.112
https://doi.org/10.7717/peerj-cs.112
https://doi.org/10.7717/peerj-cs.112
https://tailor-network.eu/wp-content/uploads/2021/11/Extended-Deliverable-9.3-Report-v1.1.pdf
https://tailor-network.eu/wp-content/uploads/2021/11/Extended-Deliverable-9.3-Report-v1.1.pdf
https://d2l.ai/

