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CALIBRATED CLASSIFIER
A binary classifier is calibrated, if:

• it outputs a probability of the instance to be
positive instead of outputting a class label;

• and that probability is calibrated, i.e. it is
equal to the proportion of positives among
all instances with the same predicted prob-
ability;

WORKS FOR ANY COST CONTEXT
The same calibrated classifier works for any false
positive and false negative cost context without
retraining:

1. Learn a calibrated classifier;

2. Apply the classifier on the given test in-
stance to obtain an estimate p̂ of its proba-
bility to be positive;

3. Determine the costs cFP and cFN per false
positive and false negative;

4. Predict positive if p̂ > cFP /(cFP+cFN ), oth-
erwise predict negative.

Prediction and cost-sensitive decision making
have been separated. This is required when
the misclassification costs are not known during
model training.

CLASSIFIER CALIBRATION
If the classifier outputs non-calibrated probabili-
ties or any real-valued scores, then it can still be
calibrated:

1. Learn a calibration map µ from classifier
outputs to calibrated probabilities;

2. Apply the classifier on the given test in-
stance to obtain the non-calibrated score s;

3. Remap the score into a calibrated probabil-
ity p̂ = µ(s).

LOGISTIC CALIBRATION
• Also known as Platt scaling [Platt 2000]

• Fits a parametric family with 2 parameters:

µlogistic(s; �, �) =
1

1 + 1 /(e�·s+�)

• Family contains only sigmoids.

• Logistic calibration is perfect if the class-
conditional score densities f� and f+ are Gaus-
sian with equal variance.
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• Easily implemented by fitting logistic regres-
sion on the single feature s.

BETA CALIBRATION
• Our novel contribution.

• Fits a parametric family with 3 parameters:

µbeta(s; a, b, c) =
1

1 + 1
.⇣

ec sa

(1�s)b

⌘

• Sigmoids, inverse sigmoids, identity and more.

• Beta calibration is perfect if the class-
conditional score densities f� and f+ are
beta distributions.
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• Easily implemented by fitting logistic regres-
sion on two features ln(s) and � ln(1� s).

BETA CALIBRATION FAMILY
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SCORE HISTOGRAMS AND CALIBRATION MAPS (ADA-O)

German Diabetes Landsat Tic-tac Vowel

EXPERIMENTS ON 41 DATASETS (LOG-LOSS)
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TAKE HOME MESSAGES
Beta calibration:

• Well-founded: derived from beta distribution;

• Easily-implemented: logistic regression after
log-transform;

• Better calibrated probabilities than from lo-
gistic in our experiments on 3 model classes.

CODE AND PACKAGES

The source code for experi-
ments, beta calibration pack-
ages for Python and R and tu-
torials for both languages:

https://betacal.github.io
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MULTICLASS?
Dirichlet calibration is the upcoming general-

isation to multi-class classifier calibration avail-
able at https://dircal.github.io


