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Figure 2: Calibration maps for two datasets. The x-axis repre-
sents uncalibrated scores. The ”empirical” dots show the true-
positive rates obtained from 10 bins of the uncalibrated scores
produced by Adaboost.

whereas the least confident prediction p̂i = 0.5 has loss ln2
regardless of the correct label. The overall log-loss can be
expressed as follows:
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where p̂ = (p̂1, . . . , p̂n) and y = (y1, . . . ,yn). Log-loss can
be rewritten as follows:
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which is the negative log-likelihood of the labels in the
data. This implies that minimising log-loss is equivalent
to maximising log-likelihood, which is a common fitting
method known as maximum likelihood estimation (MLE).

In practice, the logistic calibration maps can be fitted by
minimising log-loss using some gradient-based optimisa-
tion procedure, such as the “minimize” function provided
by SciPy (Jones et al., 2001), which uses a quasi-Newton
method to perform the optimisation. However, as the task is
simply univariate logistic regression with feature s and la-
bel y, it can be solved using the standard logistic regression
functionality in any machine learning toolkit, such as Weka
(Hall et al., 2009), Scikit-learn (Pedregosa et al., 2011), etc.

2.4 Why logistic calibration can fail

As mentioned in the introduction, logistic calibration can
fail if its parametric assumptions are not met. We now
demonstrate that this failure can be substantial and can ac-
tually lead to ‘calibrated’ scores that are worse than the
original. Figure 2 shows two datasets where the score dis-
tortions (black dots) are clearly not sigmoidal. Isotonic
calibration (green line) captures this but logistic calibra-
tion (blue) line results in a very poor fit, particularly in
the left figure. The red line shows that our proposed Beta-

calibration method provides a similar fit to isotonic calibra-
tion on this dataset. Note that this calibration map has an
inverse-sigmoid shape, which is outside of the logistic fam-
ily of calibration maps. This is no coincidence: the inverse
sigmoid is appropriate for classifiers that tend to produce
extreme scores close to 0 or 1, such as Adaboost. The lo-
gistic family, on the other hand, assumes that scores are too
close to the midpoint and need to be pulled to the extremes.

On the right we see a dataset where there again isn’t a clear
sigmoidal pattern in the uncalibrated scores. Here isotonic
calibration provides the best fit, but Beta-calibration learns
a calibration map that is almost the identity, which at least
doesn’t make matters worse like logistic calibration does.
Note that the identity map is not a member of the logistic
family.

In order to derive Beta-calibration from first principles we
first revisit a derivation of logistic calibration itself.

2.5 Logistic calibration from first principles

We show that the parametric assumption made by logistic
calibration is exactly the right one if the scores output by a
classifier are normally distributed within each class around
class means s+ and s� with the same variance s2. This
gives class-specific probability density functions (PDFs)

p(s|+) =C exp[�(s� s+)2/(2s2)]

p(s|�) =C exp[�(s� s�)2/(2s2)]

with C = 1/
p

2ps , hence the likelihood ratio is

LR(s) =
p(s|+)

p(s|�)
= exp(((�(s� s+)2 +(s� s�)2)/(2s2))

=exp((2(s+� s�)s� (s+2 � s�2))/(2s2))

=exp((s+� s�)/s2(s� (s++ s�)/2))
=exp(g(s�m))

with g = (s+�s�)/s2 and m= (s++s�)/2. For g > 0 this
is a monotonically increasing function with LR(m) = 1.

We then derive a calibrated probability as follows:1

µlogistic(s;g,�mg) = 1
1+LR(s)�1 =

1
1+ exp(�g(s�m))

giving the exact same form as in Eq.(1).

Conversely, it is easy to see that every function of this form
corresponds to some pair of Gaussians with equal variance.
Indeed, one can choose Gaussians with unit variance and
with the means s+ =m+g/2 and s� =m�g/2 on positives
and negatives, respectively.

1Here we assume a uniform prior over the classes, hence the
likelihood ratio equals the posterior odds. Adapting to a non-
uniform prior can be done by moving the decision threshold on
the calibrated probability away from 1/2.


